Design of a linear synchronous motor with high temperature superconductor materials in the armature and in the field excitation system
The high diamagnetism observed in high temperature superconducting (HTS) materials lead to applications involving levitation such as the linear synchronous motor (LSM). Certain features taken into account in conventional LSM design cannot be applied in the HTS case, due to these materials characteri...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2006-06, Vol.43 (1), p.804-808 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The high diamagnetism observed in high temperature superconducting (HTS) materials lead to applications involving levitation such as the linear synchronous motor (LSM). Certain features taken into account in conventional LSM design cannot be applied in the HTS case, due to these materials characteristics, such as BSCCO stiffness, when used as armature windings. Also other design features, e.g. slot skewing, which reduces the space harmonics of the air gap magnetic flux density, thus influencing motor performance, plays an important role in final cost. These and other aspects such as the thrust force or the effect of motor control through an inverter are examined in this paper, where the analytical and numerical methodologies involved in the design optimisation of a LSM demonstrator with premagnetised YBCO pellets in the field excitation system and BSCCO armature windings are described. Simulation results are also included. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/43/1/196 |