High quality ultrathin NbN layers on sapphire for superconducting single photon detectors
Ultra-thin epitaxial NbN layers are a key component of Superconducting Single Photon infrared Detectors. Efforts devoted to the layer growth aim at improving their critical temperature and critical current density, while keeping their thickness close to 5 nm and Tc above 10 K, which insure a large b...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2008-02, Vol.97 (1), p.012046 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 012046 |
container_title | Journal of physics. Conference series |
container_volume | 97 |
creator | Lamaestre, R Espiau de Odier, Ph Bellet-Amalric, E Cavalier, P Pouget, S Villégier, J-C |
description | Ultra-thin epitaxial NbN layers are a key component of Superconducting Single Photon infrared Detectors. Efforts devoted to the layer growth aim at improving their critical temperature and critical current density, while keeping their thickness close to 5 nm and Tc above 10 K, which insure a large bandwidth, large SNR detection at 4K. Choice of substrate is critical: for both applications, MgO wafers and R-plane sapphire are usually considered as best substrates to grown onto. However, growing NbN on M-plane orientation of sapphire wafer, 3 inch in diameter, can help improving the film quality and fabrication yield. NbN thin films were grown by reactive DC magnetron sputtering at about 600°C and passivated by an AlN layer 1.5nm thick deposited in-situ at room temperature. Growth on M-plane is shown to be better than on other sapphire orientations, including R-plane: NbN layer critical temperature reaches 13.3 K, uniform on the wafer, for a film thickness of 4.4nm measured by X-ray reflectivity. Transport properties of NbN grown on those various substrates have been correlated to their crystallographic microstructure, examined by both symmetric and asymmetric X ray diffraction. Observation of diffraction peaks has given insight on the disorientation of the NbN film. |
doi_str_mv | 10.1088/1742-6596/97/1/012046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2580391840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580391840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-d3ae0afc7a72537a0eae3a5b572a47b80c0cc3aeace90c794a321df28bc2f51d3</originalsourceid><addsrcrecordid>eNqNkMFKxDAQhoMouK4-ghDwau0kaZv2KIu6wrJe9OAppGm67VKbbJIe9u1tqYiHPTiHmRC-bwZ-hG4JPBDI85jwhEZZWmRxwWMSA6GQZGdo8ft__ud9ia683wOwsfgCfa7bXYMPg-zacMRDF5wMTdvjbbnFnTxq57HpsZfWNq3TuDYO-8Fqp0xfDSq0_Q77sXUa28aEEa100CoY56_RRS07r29-5hJ9PD-9r9bR5u3ldfW4iVQCWYgqJjXIWnHJacq4BC01k2mZcioTXuagQKmRkUoXoHiRSEZJVdO8VLROScWW6G7ea505DNoHsTeD68eTgqY5sILkCYxUOlPKGe-droV17Zd0R0FATCmKKSExJSQKLoiYUxw9mL3W2H8r9yeUU6iwVc2-Afwzgv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580391840</pqid></control><display><type>article</type><title>High quality ultrathin NbN layers on sapphire for superconducting single photon detectors</title><source>Institute of Physics Open Access Journal Titles</source><creator>Lamaestre, R Espiau de ; Odier, Ph ; Bellet-Amalric, E ; Cavalier, P ; Pouget, S ; Villégier, J-C</creator><creatorcontrib>Lamaestre, R Espiau de ; Odier, Ph ; Bellet-Amalric, E ; Cavalier, P ; Pouget, S ; Villégier, J-C</creatorcontrib><description>Ultra-thin epitaxial NbN layers are a key component of Superconducting Single Photon infrared Detectors. Efforts devoted to the layer growth aim at improving their critical temperature and critical current density, while keeping their thickness close to 5 nm and Tc above 10 K, which insure a large bandwidth, large SNR detection at 4K. Choice of substrate is critical: for both applications, MgO wafers and R-plane sapphire are usually considered as best substrates to grown onto. However, growing NbN on M-plane orientation of sapphire wafer, 3 inch in diameter, can help improving the film quality and fabrication yield. NbN thin films were grown by reactive DC magnetron sputtering at about 600°C and passivated by an AlN layer 1.5nm thick deposited in-situ at room temperature. Growth on M-plane is shown to be better than on other sapphire orientations, including R-plane: NbN layer critical temperature reaches 13.3 K, uniform on the wafer, for a film thickness of 4.4nm measured by X-ray reflectivity. Transport properties of NbN grown on those various substrates have been correlated to their crystallographic microstructure, examined by both symmetric and asymmetric X ray diffraction. Observation of diffraction peaks has given insight on the disorientation of the NbN film.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/97/1/012046</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Critical current density ; Critical temperature ; Crystallography ; Diameters ; Disorientation ; Film thickness ; Infrared detectors ; Magnetron sputtering ; Niobium nitride ; Photons ; Physics ; Room temperature ; Sapphire ; Substrates ; Superconductivity ; Thin films ; Transition temperature ; Transport properties</subject><ispartof>Journal of physics. Conference series, 2008-02, Vol.97 (1), p.012046</ispartof><rights>Copyright IOP Publishing Feb 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-d3ae0afc7a72537a0eae3a5b572a47b80c0cc3aeace90c794a321df28bc2f51d3</citedby><cites>FETCH-LOGICAL-c406t-d3ae0afc7a72537a0eae3a5b572a47b80c0cc3aeace90c794a321df28bc2f51d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/97/1/012046/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,1553,27628,27924,27925,53904,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1742-6596/97/1/012046$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Lamaestre, R Espiau de</creatorcontrib><creatorcontrib>Odier, Ph</creatorcontrib><creatorcontrib>Bellet-Amalric, E</creatorcontrib><creatorcontrib>Cavalier, P</creatorcontrib><creatorcontrib>Pouget, S</creatorcontrib><creatorcontrib>Villégier, J-C</creatorcontrib><title>High quality ultrathin NbN layers on sapphire for superconducting single photon detectors</title><title>Journal of physics. Conference series</title><description>Ultra-thin epitaxial NbN layers are a key component of Superconducting Single Photon infrared Detectors. Efforts devoted to the layer growth aim at improving their critical temperature and critical current density, while keeping their thickness close to 5 nm and Tc above 10 K, which insure a large bandwidth, large SNR detection at 4K. Choice of substrate is critical: for both applications, MgO wafers and R-plane sapphire are usually considered as best substrates to grown onto. However, growing NbN on M-plane orientation of sapphire wafer, 3 inch in diameter, can help improving the film quality and fabrication yield. NbN thin films were grown by reactive DC magnetron sputtering at about 600°C and passivated by an AlN layer 1.5nm thick deposited in-situ at room temperature. Growth on M-plane is shown to be better than on other sapphire orientations, including R-plane: NbN layer critical temperature reaches 13.3 K, uniform on the wafer, for a film thickness of 4.4nm measured by X-ray reflectivity. Transport properties of NbN grown on those various substrates have been correlated to their crystallographic microstructure, examined by both symmetric and asymmetric X ray diffraction. Observation of diffraction peaks has given insight on the disorientation of the NbN film.</description><subject>Critical current density</subject><subject>Critical temperature</subject><subject>Crystallography</subject><subject>Diameters</subject><subject>Disorientation</subject><subject>Film thickness</subject><subject>Infrared detectors</subject><subject>Magnetron sputtering</subject><subject>Niobium nitride</subject><subject>Photons</subject><subject>Physics</subject><subject>Room temperature</subject><subject>Sapphire</subject><subject>Substrates</subject><subject>Superconductivity</subject><subject>Thin films</subject><subject>Transition temperature</subject><subject>Transport properties</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkMFKxDAQhoMouK4-ghDwau0kaZv2KIu6wrJe9OAppGm67VKbbJIe9u1tqYiHPTiHmRC-bwZ-hG4JPBDI85jwhEZZWmRxwWMSA6GQZGdo8ft__ud9ia683wOwsfgCfa7bXYMPg-zacMRDF5wMTdvjbbnFnTxq57HpsZfWNq3TuDYO-8Fqp0xfDSq0_Q77sXUa28aEEa100CoY56_RRS07r29-5hJ9PD-9r9bR5u3ldfW4iVQCWYgqJjXIWnHJacq4BC01k2mZcioTXuagQKmRkUoXoHiRSEZJVdO8VLROScWW6G7ea505DNoHsTeD68eTgqY5sILkCYxUOlPKGe-droV17Zd0R0FATCmKKSExJSQKLoiYUxw9mL3W2H8r9yeUU6iwVc2-Afwzgv8</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Lamaestre, R Espiau de</creator><creator>Odier, Ph</creator><creator>Bellet-Amalric, E</creator><creator>Cavalier, P</creator><creator>Pouget, S</creator><creator>Villégier, J-C</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20080201</creationdate><title>High quality ultrathin NbN layers on sapphire for superconducting single photon detectors</title><author>Lamaestre, R Espiau de ; Odier, Ph ; Bellet-Amalric, E ; Cavalier, P ; Pouget, S ; Villégier, J-C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-d3ae0afc7a72537a0eae3a5b572a47b80c0cc3aeace90c794a321df28bc2f51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Critical current density</topic><topic>Critical temperature</topic><topic>Crystallography</topic><topic>Diameters</topic><topic>Disorientation</topic><topic>Film thickness</topic><topic>Infrared detectors</topic><topic>Magnetron sputtering</topic><topic>Niobium nitride</topic><topic>Photons</topic><topic>Physics</topic><topic>Room temperature</topic><topic>Sapphire</topic><topic>Substrates</topic><topic>Superconductivity</topic><topic>Thin films</topic><topic>Transition temperature</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamaestre, R Espiau de</creatorcontrib><creatorcontrib>Odier, Ph</creatorcontrib><creatorcontrib>Bellet-Amalric, E</creatorcontrib><creatorcontrib>Cavalier, P</creatorcontrib><creatorcontrib>Pouget, S</creatorcontrib><creatorcontrib>Villégier, J-C</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lamaestre, R Espiau de</au><au>Odier, Ph</au><au>Bellet-Amalric, E</au><au>Cavalier, P</au><au>Pouget, S</au><au>Villégier, J-C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High quality ultrathin NbN layers on sapphire for superconducting single photon detectors</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>97</volume><issue>1</issue><spage>012046</spage><pages>012046-</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Ultra-thin epitaxial NbN layers are a key component of Superconducting Single Photon infrared Detectors. Efforts devoted to the layer growth aim at improving their critical temperature and critical current density, while keeping their thickness close to 5 nm and Tc above 10 K, which insure a large bandwidth, large SNR detection at 4K. Choice of substrate is critical: for both applications, MgO wafers and R-plane sapphire are usually considered as best substrates to grown onto. However, growing NbN on M-plane orientation of sapphire wafer, 3 inch in diameter, can help improving the film quality and fabrication yield. NbN thin films were grown by reactive DC magnetron sputtering at about 600°C and passivated by an AlN layer 1.5nm thick deposited in-situ at room temperature. Growth on M-plane is shown to be better than on other sapphire orientations, including R-plane: NbN layer critical temperature reaches 13.3 K, uniform on the wafer, for a film thickness of 4.4nm measured by X-ray reflectivity. Transport properties of NbN grown on those various substrates have been correlated to their crystallographic microstructure, examined by both symmetric and asymmetric X ray diffraction. Observation of diffraction peaks has given insight on the disorientation of the NbN film.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/97/1/012046</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1742-6596 |
ispartof | Journal of physics. Conference series, 2008-02, Vol.97 (1), p.012046 |
issn | 1742-6596 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2580391840 |
source | Institute of Physics Open Access Journal Titles |
subjects | Critical current density Critical temperature Crystallography Diameters Disorientation Film thickness Infrared detectors Magnetron sputtering Niobium nitride Photons Physics Room temperature Sapphire Substrates Superconductivity Thin films Transition temperature Transport properties |
title | High quality ultrathin NbN layers on sapphire for superconducting single photon detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20quality%20ultrathin%20NbN%20layers%20on%20sapphire%20for%20superconducting%20single%20photon%20detectors&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Lamaestre,%20R%20Espiau%20de&rft.date=2008-02-01&rft.volume=97&rft.issue=1&rft.spage=012046&rft.pages=012046-&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/97/1/012046&rft_dat=%3Cproquest_O3W%3E2580391840%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580391840&rft_id=info:pmid/&rfr_iscdi=true |