On random permutations of finite groups

Given a finite abelian group G ,  consider a uniformly random permutation of the set of all elements of G . Compute the difference of each pair of consecutive elements along the permutation. What is the number of occurrences of h ∈ G \ { 0 } in this sequence of differences? How do these numbers of o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2021-09, Vol.54 (2), p.515-528
Hauptverfasser: Berend, D., Mamana, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a finite abelian group G ,  consider a uniformly random permutation of the set of all elements of G . Compute the difference of each pair of consecutive elements along the permutation. What is the number of occurrences of h ∈ G \ { 0 } in this sequence of differences? How do these numbers of occurrences behave for several group elements simultaneously? Can we get similar results for non-abelian G ? How do the answers change if differences are replaced by sums? In this paper, we answer these questions. Moreover, we formulate analogous results in a general combinatorial setting.
ISSN:0925-9899
1572-9192
DOI:10.1007/s10801-020-00999-4