The Hörmander multiplier theorem for n-linear operators
In this paper, we study the Hörmander multiplier theorem for multilinear operators. We generalize the result of Tomita (J Funct Anal 259(8):2028–2044, 2010) to wider target spaces and extend that of Grafakos and Van Nguyen (Monatsh Math 190(4):735–753, 2019) to multilinear operators. We indeed give...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2021-10, Vol.381 (1-2), p.499-555 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the Hörmander multiplier theorem for multilinear operators. We generalize the result of Tomita (J Funct Anal 259(8):2028–2044, 2010) to wider target spaces and extend that of Grafakos and Van Nguyen (Monatsh Math 190(4):735–753, 2019) to multilinear operators. We indeed give two different proofs: The first proof is based on the results of Grafakos et al. (Can J Math 65(2):299–330, 2013; II J Math Soc Jpn 69(2):529–562, 2017), Grafakos and Van Nguyen (Colloq Math 144(1):1–30, 2016; Monatsh Math 190(4):735–753, 2019), Miyachi and Tomita (Rev Mat Iberoam 29(2):495–530, 2013) and for the second one we provide a new and original approach, inspired by Muscalu et al. (Acta Math 193(2):269–296, 2004). We also give an application and discuss the sharpness of the result. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-021-02162-1 |