The Hörmander multiplier theorem for n-linear operators

In this paper, we study the Hörmander multiplier theorem for multilinear operators. We generalize the result of Tomita (J Funct Anal 259(8):2028–2044, 2010) to wider target spaces and extend that of Grafakos and Van Nguyen (Monatsh Math 190(4):735–753, 2019) to multilinear operators. We indeed give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-10, Vol.381 (1-2), p.499-555
Hauptverfasser: Lee, Jongho, Heo, Yaryong, Hong, Sunggeum, Lee, Jin Bong, Park, Bae Jun, Park, Yejune, Yang, Chan Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the Hörmander multiplier theorem for multilinear operators. We generalize the result of Tomita (J Funct Anal 259(8):2028–2044, 2010) to wider target spaces and extend that of Grafakos and Van Nguyen (Monatsh Math 190(4):735–753, 2019) to multilinear operators. We indeed give two different proofs: The first proof is based on the results of Grafakos et al. (Can J Math 65(2):299–330, 2013; II J Math Soc Jpn 69(2):529–562, 2017), Grafakos and Van Nguyen (Colloq Math 144(1):1–30, 2016; Monatsh Math 190(4):735–753, 2019), Miyachi and Tomita (Rev Mat Iberoam 29(2):495–530, 2013) and for the second one we provide a new and original approach, inspired by Muscalu et al. (Acta Math 193(2):269–296, 2004). We also give an application and discuss the sharpness of the result.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-021-02162-1