Accelerated proximal point method for maximally monotone operators

This paper proposes an accelerated proximal point method for maximally monotone operators. The proof is computer-assisted via the performance estimation problem approach. The proximal point method includes various well-known convex optimization methods, such as the proximal method of multipliers and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2021-11, Vol.190 (1-2), p.57-87
1. Verfasser: Kim, Donghwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an accelerated proximal point method for maximally monotone operators. The proof is computer-assisted via the performance estimation problem approach. The proximal point method includes various well-known convex optimization methods, such as the proximal method of multipliers and the alternating direction method of multipliers, and thus the proposed acceleration has wide applications. Numerical experiments are presented to demonstrate the accelerating behaviors.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-021-01643-0