On the Hurwitz Zeta-Function with Algebraic Irrational Parameter. II

It is known that the Hurwitz zeta-function with transcendental or rational parameter has a discrete universality property; i.e., the shifts , , , approximate a wide class of analytic functions. The case of algebraic irrational is a complicated open problem. In the paper, some progress in this proble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2021-09, Vol.314 (1), p.127-137
1. Verfasser: Laurinčikas, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that the Hurwitz zeta-function with transcendental or rational parameter has a discrete universality property; i.e., the shifts , , , approximate a wide class of analytic functions. The case of algebraic irrational is a complicated open problem. In the paper, some progress in this problem is achieved. It is proved that there exists a nonempty closed set of analytic functions such that the functions in are approximated by the above shifts. Also, the case of certain compositions is discussed.
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543821040076