Adsorption behavior and mechanism of Serratia marcescens for Eu(III) in rare earth wastewater
Directly discharging low-concentration rare-earth wastewater not only wastes rare-earth resources but also pollutes the environment. In this study, the biosorption behavior of Serratia marcescens for Eu(III) was studied with emphasis on the optimization of adsorption conditions, adsorption kinetics,...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2021-10, Vol.28 (40), p.56915-56926 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Directly discharging low-concentration rare-earth wastewater not only wastes rare-earth resources but also pollutes the environment. In this study, the biosorption behavior of
Serratia marcescens
for Eu(III) was studied with emphasis on the optimization of adsorption conditions, adsorption kinetics, and adsorption isotherm. It was shown that the maximum adsorption capacity of
Serratia marcescens
reached 115.36 mg·g
−1
under an optimal condition, indicating the good adsorption capability of
Serratia marcescens
for Eu(III). The adsorption kinetics and adsorption isotherm analysis showed that the adsorption process conforms to the pseudo-second-order kinetic model and Langmuir adsorption isotherm, indicating that the adsorption of Eu(III) by
Serratia marcescens
is a monolayer chemical adsorption process. In addition, the adsorption mechanism was investigated by using characterizations of zeta potential, scanning electron microscope–energy dispersive spectrometer (SEM-EDS), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. It was revealed that the adsorption of Eu(III) by
S. marcescens
is a combination of electrostatic attraction, ions exchange and coordination. These findings indicate that S. marcescens can be used as a potential biosorbent to recover rare earth elements from rare earth wastewater. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-021-14668-x |