The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steel

The aim of this study was to assess whether it is possible to produce a high adhesive carbon coating by applying low-temperature RFCVD and glow discharge methods on nanobainitic X37CrMoV5-1 steel with and without nitrided sublayer. For this purpose, several methods of investigation were used: observ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2021-11, Vol.52 (11), p.5066-5078
Hauptverfasser: Skołek, Emilia, Meredyk, Monika, Tarnowski, Michał, Borowski, Tomasz, Kulikowski, Krzysztof, Chodun, Rafał, Marciniak, Szymon, Sobiecki, Jerzy Robert, Świątnicki, Wiesław
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to assess whether it is possible to produce a high adhesive carbon coating by applying low-temperature RFCVD and glow discharge methods on nanobainitic X37CrMoV5-1 steel with and without nitrided sublayer. For this purpose, several methods of investigation were used: observations of coating morphology by scanning electron microscopy (SEM), analysis of bonds found in coatings (Raman spectroscopy), microhardness tests and adhesion of coatings (Scratch tests). Our research has shown that low-temperature RFCVD and glow discharge processes of nanobainitic X37CrMoV5-1 steel allow producing carbon coatings that can be described as hardened carbon coatings with very high hardness—> 2000 HV 0.25 in case of RFCVD processes and > 3300 HV 0.025 for glow discharge process and low friction coefficient—near 0.12 at 5 N load. However, the adhesion of produced coatings to the steel substrate strongly depends on the appropriate selection of the process parameters and on the proper preparation of the substrate before the deposition regarding the thermal stability of nanobainite.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-021-06453-9