Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications

Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-10, Vol.13 (38), p.15998-1616
Hauptverfasser: Li, Hao, Chen, Xueping, Shen, Danqing, Wu, Fan, Pleixats, Roser, Pan, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physical and chemical properties differ from the properties of the individual atoms and molecules of bulk matter. In particular, the design and development of silica nanomaterials have captivated the attention of several researchers worldwide. The applications of hybrid silicas are still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles has broadened the spectrum of applications of mesoporous organosilicas and/or has improved their performances. On the other hand, adsorption is a widely used technique for the separation and removal of pollutants (metal ions, dyes, organics,...) from wastewater. Silica nanoparticles have specific advantages over other materials for adsorption applications due to their unique structural characteristics: a stable structure, a high specific surface area, an adjustable pore structure, the presence of silanol groups on the surface which allow easy modification, less environmental harm, simple synthesis, low cost, etc . Silica nanoparticles are potential adsorbents for pollutants. We present herein an overview of the different types of silica nanoparticles going from the definitions to properties, synthetic approaches and the mention of potential applications. We focus mainly on the recent advances in the adsorption of different target substances (metal ions, dyes and other organics). Silica nanoparticles have evolved from the field of nanotechnology to different fields of science and engineering. An overview of silica nanoparticles going from definitions to properties, synthetic approaches and applications is presented.
ISSN:2040-3364
2040-3372
DOI:10.1039/d1nr04048k