Sign-Changing Solutions to a N-Kirchhoff Equation with Critical Exponential Growth in RN
We study the existence and asymptotic behavior of least energy sign-changing solutions for a N-Laplacian equation of Kirchhoff type with critical exponential growth in R N - ( a + b ∫ R N | ∇ u | N d x ) Δ N u + V ( | x | ) | u | N - 2 u = f ( | x | , u ) , u ∈ W 1 , N ( R N ) , where a , b > 0 a...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2021, Vol.44 (6), p.3553-3570 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the existence and asymptotic behavior of least energy sign-changing solutions for a N-Laplacian equation of Kirchhoff type with critical exponential growth in
R
N
-
(
a
+
b
∫
R
N
|
∇
u
|
N
d
x
)
Δ
N
u
+
V
(
|
x
|
)
|
u
|
N
-
2
u
=
f
(
|
x
|
,
u
)
,
u
∈
W
1
,
N
(
R
N
)
,
where
a
,
b
>
0
are constants,
Δ
N
u
=
div
(
|
∇
u
|
N
-
2
∇
u
)
, and
V
(
x
) is a smooth function. Under some suitable assumptions on
f
∈
C
(
R
N
×
R
)
, we apply the constraint minimization argument to establish a least energy sign-changing solution
u
b
with precisely two nodal domains. Moreover, we show that the energy of
u
b
is strictly larger than two times of the ground state energy and analyze the asymptotic behavior of
u
b
as
b
↘
0
+
. Our results generalize the existing ones to the N-Kirchhoff equation with critical growth. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-021-01127-6 |