The Maximum Number of Spanning Trees of a Graph with Given Matching Number

The number of spanning trees of a graph G is the total number of distinct spanning subgraphs of G that are trees. Feng et al. determined the maximum number of spanning trees in the class of connected graphs with n vertices and matching number β for 2 ≤ β ≤ n / 3 and β = ⌊ n / 2 ⌋ . They also pointed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2021-11, Vol.44 (6), p.3725-3732
Hauptverfasser: Liu, Muhuo, Zhang, Guangliang, Das, Kinkar Chandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The number of spanning trees of a graph G is the total number of distinct spanning subgraphs of G that are trees. Feng et al. determined the maximum number of spanning trees in the class of connected graphs with n vertices and matching number β for 2 ≤ β ≤ n / 3 and β = ⌊ n / 2 ⌋ . They also pointed out that it is still an open problem to the case of n / 3 < β ≤ ⌊ n / 2 ⌋ - 1 . In this paper, we solve this problem completely.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-021-01142-7