The Maximum Number of Spanning Trees of a Graph with Given Matching Number
The number of spanning trees of a graph G is the total number of distinct spanning subgraphs of G that are trees. Feng et al. determined the maximum number of spanning trees in the class of connected graphs with n vertices and matching number β for 2 ≤ β ≤ n / 3 and β = ⌊ n / 2 ⌋ . They also pointed...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2021-11, Vol.44 (6), p.3725-3732 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The number of spanning trees of a graph
G
is the total number of distinct spanning subgraphs of
G
that are trees. Feng et al. determined the maximum number of spanning trees in the class of connected graphs with
n
vertices and matching number
β
for
2
≤
β
≤
n
/
3
and
β
=
⌊
n
/
2
⌋
. They also pointed out that it is still an open problem to the case of
n
/
3
<
β
≤
⌊
n
/
2
⌋
-
1
. In this paper, we solve this problem completely. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-021-01142-7 |