Topological flows for hyperbolic groups
We show that for every non-elementary hyperbolic group the Bowen–Margulis current associated with a strongly hyperbolic metric forms a unique group-invariant Radon measure class of maximal Hausdorff dimension on the boundary square. Applications include a characterization of roughly similar hyperbol...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2021-11, Vol.41 (11), p.3474-3520 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that for every non-elementary hyperbolic group the Bowen–Margulis current associated with a strongly hyperbolic metric forms a unique group-invariant Radon measure class of maximal Hausdorff dimension on the boundary square. Applications include a characterization of roughly similar hyperbolic metrics via mean distortion. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2020.101 |