Detecting earthquakes: a novel deep learning-based approach for effective disaster response

In the present study, we present an intelligent earthquake signal detector that provides added assistance to automate traditional disaster responses. To effectively respond in a crisis scenario, additional sensors and automation are always necessary. Deep learning has achieved success in various low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2021-11, Vol.51 (11), p.8305-8315
Hauptverfasser: Shakeel, Muhammad, Itoyama, Katsutoshi, Nishida, Kenji, Nakadai, Kazuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, we present an intelligent earthquake signal detector that provides added assistance to automate traditional disaster responses. To effectively respond in a crisis scenario, additional sensors and automation are always necessary. Deep learning has achieved success in various low signal-to-noise ratio tasks, which motivated us to propose a novel 3-dimensional (3D) CNN-RNN-based earthquake detector from a demonstration paradigm to real-time implementation. Data taken from the ST anford EA rthquake D ataset (STEAD) are used to train the network. After preprocessing the raw earthquake signals, features such as log-mel spectrograms are extracted. Once the model has learned spatial and temporal information from low-frequency earthquake waves, it can be employed in real time to distinguish small and large earthquakes from seismic noise with an accuracy, sensitivity, and specificity of 99.057%, 98.488%, and 99.621%, respectively. We also observe that the choice of filters in log-mel spectrogram impacts the results much more than the model complexity. Furthermore, we implement and test the model on data collected continuously over two months by a personal seismometer in the laboratory. The inference speed for a single prediction is 2.27 seconds, and the system delivers a stable detection of all 63 major earthquakes from November 2019 to December 2019 reported by the Japan Meteorological Agency.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-021-02285-7