Transcriptome profiling reveals key genes in regulation of the tepal trichome development in Liliumpumilum D.C
Key message A number of potential genes and pathways involved in tepal trichome development were identified in a natural lily mutant by transcriptome analysis and were confirmed with trichome and trichomeless species. Trichome is a specialized structure found on the surface of the plant with an impo...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2021-10, Vol.40 (10), p.1889-1906 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Key message
A number of potential genes and pathways involved in tepal trichome development were identified in a natural lily mutant by transcriptome analysis and were confirmed with trichome and trichomeless species.
Trichome is a specialized structure found on the surface of the plant with an important function in survival against abiotic and biotic stress. It is also an important economic trait in crop breeding. Extensive research has investigated the foliar trichome in model plants (Arabidopsis and tomato). However, the developmental mechanism of tepal trichome remains elusive.
Lilium
pumilum
is an edible ornamental bulb and a good breeding parent possessing cold and salt-alkali resistance. Here, we found a natural mutant of
Lilium
pumilum
grown on a highland whose tepals are covered by trichomes. Our data indicate that trichomes of the mutant are multicellular and branchless. Notably, stomata are also developed on the tepal of the mutant as well, suggesting there may be a correlation between trichome and stomata regulation. Furthermore, we isolated 27 differentially expressed genes (DEGs) by comparing the transcriptome profiling between the natural mutant and the wild type. These 27 genes belong to 4 groups: epidermal cell cycle and division, trichome morphogenesis, stress response, and transcription factors. Quantitative real-time PCR in
Lilium
pumilum
(natural mutant and the wild type) and other lily species (
Lilium
leichtlinii
var.
maximowiczii
/trichome;
Lilium
davidii
var.
willmottiae
/, trichomeless) confirmed the validation of RNA-seq data and identified several trichome-related genes. |
---|---|
ISSN: | 0721-7714 1432-203X |
DOI: | 10.1007/s00299-021-02753-x |