Error-protected qubits in a silicon photonic chip

General-purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realize composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits and are the most viable approach for constructing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2021-10, Vol.17 (10), p.1137-1143
Hauptverfasser: Vigliar, Caterina, Paesani, Stefano, Ding, Yunhong, Adcock, Jeremy C., Wang, Jianwei, Morley-Short, Sam, Bacco, Davide, Oxenløwe, Leif K., Thompson, Mark G., Rarity, John G., Laing, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:General-purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realize composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits and are the most viable approach for constructing an all-photonic quantum computer. Here we propose and demonstrate an integrated silicon photonic scheme that both entangles multiple photons, and encodes multiple physical qubits on individual photons, to produce error-protected qubits. We realize reconfigurable graph states to compare several schemes with and without error-correction encodings and implement a range of quantum information processing tasks. We observe a success rate increase from 62.5% to 95.8% when running a phase-estimation algorithm without and with error protection, respectively. Finally, we realize hypergraph states, which are a generalized class of resource states that offer protection against correlated errors. Our results show how quantum error-correction encodings can be implemented with resource-efficient photonic architectures to improve the performance of quantum algorithms. Entangled photon states can be used to make quantum information more robust. A photonic experimental implementation with eight qubits shows that error-protection schemes can increase the success rate of running a quantum algorithm.
ISSN:1745-2473
1745-2481
DOI:10.1038/s41567-021-01333-w