Nano-field mapping for the semiconductor industry
There is a need to measure the dopant potentials and strain fields in semiconductor materials with nm-scale resolution. Here we show that off-axis electron holography is a powerful technique that can be used to measure the fields present in a high-k metal gate 28-nm node nMOS device with a contact e...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2011-11, Vol.326 (1), p.012054-4 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a need to measure the dopant potentials and strain fields in semiconductor materials with nm-scale resolution. Here we show that off-axis electron holography is a powerful technique that can be used to measure the fields present in a high-k metal gate 28-nm node nMOS device with a contact etch stop liner stressor. Off-axis electron holography has been used to map the positions of the active dopants with a spatial resolution of 1 nm. The experimental results have been compared to electron energy loss spectroscopy maps. Finally, dark field electron holography has also been used to provide strain maps and the experimental results have been verified using nanobeam electron diffraction. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/326/1/012054 |