Wall-modeled lattice Boltzmann large-eddy simulation of neutral atmospheric boundary layers

The lattice Boltzmann method (LBM) sees a growing popularity in the field of atmospheric sciences and wind energy, largely due to its excellent computational performance. Still, LBM large-eddy simulation (LES) studies of canonical atmospheric boundary layer flows remain limited. One reason for this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-10, Vol.33 (10), p.105111
Hauptverfasser: Asmuth, Henrik, Janßen, Christian F., Olivares-Espinosa, Hugo, Ivanell, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lattice Boltzmann method (LBM) sees a growing popularity in the field of atmospheric sciences and wind energy, largely due to its excellent computational performance. Still, LBM large-eddy simulation (LES) studies of canonical atmospheric boundary layer flows remain limited. One reason for this is the early stage of development of LBM-specific wall models. In this work, we discuss LBM–LES of isothermal pressure-driven rough-wall boundary layers using a cumulant collision model. To that end, we also present a novel wall modeling approach, referred to as inverse momentum exchange method (iMEM). The iMEM enforces a wall shear stress at the off-wall grid points by adjusting the slip velocity in bounce-back boundary schemes. In contrast to other methods, the approach does not rely on the eddy viscosity, nor does it require the reconstruction of distribution functions. Initially, we investigate different aspects of the modeling of the wall shear stress, i.e., an averaging of the input velocity as well as the wall-normal distance of its sampling location. Particularly, sampling locations above the first off-wall node are found to be an effective measure to reduce the occurring log-layer mismatch. Furthermore, we analyze the turbulence statistics at different grid resolutions. The results are compared to phenomenological scaling laws, experimental, and numerical references. The analysis demonstrates a satisfactory performance of the numerical model, specifically when compared to a well-established mixed pseudo-spectral finite difference (PSFD) solver. Generally, the study underlines the suitability of the LBM and particularly the cumulant LBM for computationally efficient LES of wall-modeled boundary layer flows.
ISSN:1070-6631
1089-7666
1089-7666
DOI:10.1063/5.0065701