Accurate and Efficient Finite-Difference Time- Domain Formulation of Dusty Plasma

The finite-difference time-domain (FDTD) method has been widely used for the electromagnetic analysis of complex dispersive media. The shift-operator (SO)-FDTD or auxiliary differential equation (ADE)-FDTD formulation has been mainly employed for dusty plasma. Each FDTD formulation has its pros and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2021-10, Vol.69 (10), p.6600-6606
Hauptverfasser: Kim, Yong-Jin, Jung, Kyung-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The finite-difference time-domain (FDTD) method has been widely used for the electromagnetic analysis of complex dispersive media. The shift-operator (SO)-FDTD or auxiliary differential equation (ADE)-FDTD formulation has been mainly employed for dusty plasma. Each FDTD formulation has its pros and cons. SO-FDTD is accurate but not computationally efficient. ADE-FDTD needs fewer computational resources, but its accuracy is poor. Here, we propose an accurate and efficient FDTD formulation for dusty plasma, based on the bilinear transform (BT). We perform a comprehensive study on the numerical permittivity and the computational efficiency for three FDTD formulations. Numerical examples are employed to illustrate that the proposed BT-FDTD outperforms the previously reported FDTD formulations for dusty plasma. In addition, based on the proposed BT-FDTD simulations, the effect of dust particles on EM wave propagation is investigated in the GHz band and the THz band.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2021.3069542