Lp properties of non-Archimedean fractional differentiation operators

Let D α be the Vladimirov–Taibleson fractional differentiation operator acting on complex-valued functions on a non-Archimedean local field. The identity D α D - α f = f was known only for the case where f has a compact support. Following a result by Samko about the fractional Laplacian of real anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2021, Vol.12 (4)
1. Verfasser: Kochubei, Anatoly N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let D α be the Vladimirov–Taibleson fractional differentiation operator acting on complex-valued functions on a non-Archimedean local field. The identity D α D - α f = f was known only for the case where f has a compact support. Following a result by Samko about the fractional Laplacian of real analysis, we extend the above identity in terms of L p -convergence of truncated integrals. Differences between real and non-Archimedean cases are discussed.
ISSN:1662-9981
1662-999X
DOI:10.1007/s11868-021-00428-5