Lp properties of non-Archimedean fractional differentiation operators
Let D α be the Vladimirov–Taibleson fractional differentiation operator acting on complex-valued functions on a non-Archimedean local field. The identity D α D - α f = f was known only for the case where f has a compact support. Following a result by Samko about the fractional Laplacian of real anal...
Gespeichert in:
Veröffentlicht in: | Journal of pseudo-differential operators and applications 2021, Vol.12 (4) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
D
α
be the Vladimirov–Taibleson fractional differentiation operator acting on complex-valued functions on a non-Archimedean local field. The identity
D
α
D
-
α
f
=
f
was known only for the case where
f
has a compact support. Following a result by Samko about the fractional Laplacian of real analysis, we extend the above identity in terms of
L
p
-convergence of truncated integrals. Differences between real and non-Archimedean cases are discussed. |
---|---|
ISSN: | 1662-9981 1662-999X |
DOI: | 10.1007/s11868-021-00428-5 |