A Unified Fourth-Order Tensor-Based Smart Community System

Empowered by the ubiquitous sensing capabilities of Internet of Things (IoT) technologies, smart communities could benefit our daily life in many aspects. Various smart community studies and practices have been conducted, especially in China thanks to the government's support. However, most int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-10, Vol.20 (21), p.5990, Article 5990
Hauptverfasser: Liu, Chang, Wu, Huaiyu, Wang, Junyuan, Wang, Mingkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Empowered by the ubiquitous sensing capabilities of Internet of Things (IoT) technologies, smart communities could benefit our daily life in many aspects. Various smart community studies and practices have been conducted, especially in China thanks to the government's support. However, most intelligent systems are designed and built individually by different manufacturers in diverging platforms with different functionalities. Therefore, multiple individual systems must be deployed in a smart community to have a set of functions, which could lead to hardware waste, high energy consumption and high deployment cost. More importantly, current smart community systems mainly focus on the technologies involved, while the effects of human activity are neglected. In this paper, a fourth-order tensor model representing object, time, location and human activity is proposed for human-centered smart communities, based on which a unified smart community system is designed. Thanks to the powerful data management abilities of a high-order tensor, multiple functions can be integrated into our system. In addition, since the tensor model embeds human activity information, complex functions could be implemented by exploring the effects of human activity. Two exemplary applications are presented to demonstrate the flexibility of the proposed unified fourth-order tensor-based smart community system.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20215990