Cyclic codes over F2+uF2+vF2+v2F2 with respect to the homogeneous weight and their applications to DNA codes
In this paper, we study cyclic codes and their duals over the local Frobenius non-chain ring R = F 2 [ u , v ] / ⟨ u 2 = v 2 , u v ⟩ , and we obtain optimal binary linear codes with respect to the homogeneous weight over R via a Gray map. Moreover, we characterize DNA codes as images of cyclic codes...
Gespeichert in:
Veröffentlicht in: | Applicable algebra in engineering, communication and computing communication and computing, 2021, Vol.32 (5), p.621-636 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study cyclic codes and their duals over the local Frobenius non-chain ring
R
=
F
2
[
u
,
v
]
/
⟨
u
2
=
v
2
,
u
v
⟩
, and we obtain optimal binary linear codes with respect to the homogeneous weight over
R
via a Gray map. Moreover, we characterize DNA codes as images of cyclic codes over
R
. |
---|---|
ISSN: | 0938-1279 1432-0622 |
DOI: | 10.1007/s00200-020-00416-0 |