Local uniqueness of ground states for rotating bose-einstein condensates with attractive interactions
We study ground states of two-dimensional Bose-Einstein condensates with attractive interactions in a trap V ( x ) rotating at the velocity Ω . It is known that there exists a critical rotational velocity 0 < Ω ∗ : = Ω ∗ ( V ) ≤ ∞ and a critical number 0 < a ∗ < ∞ such that for any rotation...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2021-12, Vol.60 (6), Article 237 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study ground states of two-dimensional Bose-Einstein condensates with attractive interactions in a trap
V
(
x
) rotating at the velocity
Ω
. It is known that there exists a critical rotational velocity
0
<
Ω
∗
:
=
Ω
∗
(
V
)
≤
∞
and a critical number
0
<
a
∗
<
∞
such that for any rotational velocity
0
≤
Ω
<
Ω
∗
, ground states exist if and only if the coupling constant
a
satisfies
a
<
a
∗
. For a general class of traps
V
(
x
), which may not be symmetric, we prove in this paper that up to a constant phase, there exists a unique ground state as
a
↗
a
∗
, where
Ω
∈
(
0
,
Ω
∗
)
is fixed. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-021-02055-w |