Local uniqueness of ground states for rotating bose-einstein condensates with attractive interactions

We study ground states of two-dimensional Bose-Einstein condensates with attractive interactions in a trap V ( x ) rotating at the velocity Ω . It is known that there exists a critical rotational velocity 0 < Ω ∗ : = Ω ∗ ( V ) ≤ ∞ and a critical number 0 < a ∗ < ∞ such that for any rotation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2021-12, Vol.60 (6), Article 237
Hauptverfasser: Guo, Yujin, Luo, Yong, Peng, Shuangjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study ground states of two-dimensional Bose-Einstein condensates with attractive interactions in a trap V ( x ) rotating at the velocity Ω . It is known that there exists a critical rotational velocity 0 < Ω ∗ : = Ω ∗ ( V ) ≤ ∞ and a critical number 0 < a ∗ < ∞ such that for any rotational velocity 0 ≤ Ω < Ω ∗ , ground states exist if and only if the coupling constant a satisfies a < a ∗ . For a general class of traps V ( x ), which may not be symmetric, we prove in this paper that up to a constant phase, there exists a unique ground state as a ↗ a ∗ , where Ω ∈ ( 0 , Ω ∗ ) is fixed.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-021-02055-w