Effects of three essential oils and their nano-emulsions on Listeria monocytogenes and Shigella flexneri in Egyptian Talaga cheese

Talaga cheese is a soft Egyptian cheese that has been associated with foodborne pathogens such as Listeria monocytogenes and Shigella flexneri. Essential oils (EOs) play a pivotal role in sustainably controlling foodborne diseases and as a potential preservative in soft cheeses. However, limited dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of food microbiology 2021-10, Vol.355, p.109334, Article 109334
Hauptverfasser: Elsherif, Walaa M., Talaat AL Shrief, Lamiaa M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Talaga cheese is a soft Egyptian cheese that has been associated with foodborne pathogens such as Listeria monocytogenes and Shigella flexneri. Essential oils (EOs) play a pivotal role in sustainably controlling foodborne diseases and as a potential preservative in soft cheeses. However, limited data is available comparing the antibacterial activity of EOs and their nano-emulsions (NEs) when inoculated into Talaga cheese. Therefore, this study aimed to examine the antibacterial activity of carvacrol, clove, and cumin EOs, in addition to their NEs, against L. monocytogenes (NCTC 13372/ATCC® 7644) and S. flexneri (ATCC®12022TW⁎) inoculated into laboratory-manufactured Egyptian Talaga cheese during refrigerated storage. The NEs had a Z-average diameter of 32.98 ± 29.75 nm, 45.2 ± 34.25 nm, and 50.23 ± 15.7 nm and a PDI of 0.326, 0.245, and 0.307 for carvacrol, clove, and cumin NEs, respectively. The flow of active functional groups of EOs and NEs as clarified by Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) showed the spherical-shaped droplet structure of the prepared NEs. The minimum inhibitory concentration (MIC) of all EOs and their NEs was 0.78% against L. monocytogenes and 1.56% against S. flexneri, while those of carvacrol EO and its NE were 0.78% against both microorganisms. By supplementation in cheese, NEs significantly reduced the counts of inoculated pathogens from 8.2 log10cfu/g to 1.5 log10cfu/g after 2 to 3 weeks compared to EOs, which reduced them after 4 to 5 weeks. The carvacrol NE showed excellent antibacterial activity with no cheese sensory impairment. It reduced L. monocytogenes by 99% (R%) after 7 days and after 3 weeks for S. flexneri at 0.78% concentration, while higher concentrations and a longer period were required for the other NEs to show an inhibitory effect. NEs showed a greater antimicrobial effect than their non-emulsified counterparts, especially when interacting with food items, and carvacrol NE at a low concentration (0.78%) demonstrated its efficacy as an antibacterial and natural food preservative. •Using modified method for different nano-emulsions (NEs) (carvacrol NE, clove NE and cumin NE) preparation and characterized by zeta sizer and TEM•Comparison between the essential oils and their NEs through the active functional group content by FTIR•The antimicrobial activity of NEs and EOs by MIC•The effectivity of NEs and EOs on L. monocytogenes and S. flexneri after inoculation i
ISSN:0168-1605
1879-3460
DOI:10.1016/j.ijfoodmicro.2021.109334