Constraining neutrinoless double β decay matrix elements in 130Te

If a reliable measurement of a neutrinoless double beta decay (0v2β) rate is made, the effective neutrino masses can be determined from the nuclear matrix element. Theoretical calculations of nuclear matrix elements, however, show some disagreement. To test the suitability of various theoretical mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2012-09, Vol.381 (1)
Hauptverfasser: McAllister, S A, Kay, B P, Freeman, S J, Schiffer, J P, Diebel, C M, Bloxham, T, Howard, A M, Parker, P D, Sharp, D K, Thomas, J S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If a reliable measurement of a neutrinoless double beta decay (0v2β) rate is made, the effective neutrino masses can be determined from the nuclear matrix element. Theoretical calculations of nuclear matrix elements, however, show some disagreement. To test the suitability of various theoretical models, they should be benchmarked against experimentally measured nuclear properties, such as the ground-state distribution of nucleons in the parent-daughter nuclei, and how they change as a result of the decay process. Single neutron-adding reactions have been performed on the 0v2β candidate nucleus, 130Te. The Macfarlane-French sum rules have then been used to determine the single-particle vacancies. Some quasi-random phase approximations (QRPA) can greatly simplify theoretical calculations by describing the ground state of even-even nuclei using a BCS wavefunction. This assumption has been tested using two-neutron removal, (p,t) reactions. The BCS wavefunction appeared to be a valid approximation for valence neutrons.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/381/1/012043