Calibration of cavity pressure simulation using autoencoder and multilayer perceptron neural networks

Numerical simulations of polymer melt flow behavior in cavities help predict and optimize injection molding process parameters. However, simulation and actual results may differ because of simplified mathematical models, inaccurate processing conditions, material property settings, and machine aging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2021-10, Vol.61 (10), p.2511-2521
Hauptverfasser: Huang, Ming‐Shyan, Liu, Chun‐Yin, Ke, Kun‐Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2521
container_issue 10
container_start_page 2511
container_title Polymer engineering and science
container_volume 61
creator Huang, Ming‐Shyan
Liu, Chun‐Yin
Ke, Kun‐Cheng
description Numerical simulations of polymer melt flow behavior in cavities help predict and optimize injection molding process parameters. However, simulation and actual results may differ because of simplified mathematical models, inaccurate processing conditions, material property settings, and machine aging, among other factors. Therefore, simulated optimal process parameters cannot be directly applied in practice. This study applied machine learning to generate a virtual–actual correction model to improve the accuracy of simulation results, especially the cavity pressure profile, a key indicator of injection‐molding quality for identifying ideal process parameter settings such as filling‐to‐packing switchover time and holding pressure. This method does not require big data for model training to enhance its practicality. Therefore, the correction model is only suitable for specific settings. A set of injection molding machines, molds, and processed materials were used for experimental verification. An autoencoder model was used to extract the features of simulation and actual cavity pressure curves. Then, a multilayer perceptron model was used to determine a relationship between simulation and actual features. The autoencoder was used to decode simulated features into cavity pressure curves. The proposed method was verified with dumbbell‐shaped specimens; the correlation between simulated and actual cavity pressures was greatly improved from 81% to 98%.
doi_str_mv 10.1002/pen.25777
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2578138660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A680643184</galeid><sourcerecordid>A680643184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4737-e37e421926844378242ce6d5cf1680f1194e9fc861e474f76b53fff8a9f55d0c3</originalsourceid><addsrcrecordid>eNp1klFvFCEQx4nRxLP1wW-wiU8m7hUWFtjH5lK1SaONrc-EY4eVugcrsNb79tJuE73kDA8TmN9_Bpg_Qm8IXhOMm7MJ_LpphRDP0Iq0TNYNp-w5WmFMm5pKKV-iVynd4cLStlsh2OjRbaPOLvgq2MroXy7vqylCSnOEKrndPC7ZOTk_VHrOAbwJPcRK-74q6exGvS_bCaKBKcfCepijHkvI9yH-SKfohdVjgtdP8QR9-3Bxu_lUX335eLk5v6oNE1TUQAWwhnQNl4xRIRvWGOB9ayzhEltCOgadNZITYIJZwbcttdZK3dm27bGhJ-jtUneK4ecMKau7MEdfWqryKZJQyTn-Sw16BOW8DTlqs3PJqPPShzNKJCtUfYQawEN5WfBgXTk-4NdH-LJ62DlzVPDuQFCYDL_zoOeU1OXN10P2_T_s9mEUZUDOJzd8z2mRHCttYkgpglVTdDsd94pg9eATVXyiHn1S2LOFvS_32_8fVNcXnxfFH34cvY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578138660</pqid></control><display><type>article</type><title>Calibration of cavity pressure simulation using autoencoder and multilayer perceptron neural networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Ming‐Shyan ; Liu, Chun‐Yin ; Ke, Kun‐Cheng</creator><creatorcontrib>Huang, Ming‐Shyan ; Liu, Chun‐Yin ; Ke, Kun‐Cheng</creatorcontrib><description>Numerical simulations of polymer melt flow behavior in cavities help predict and optimize injection molding process parameters. However, simulation and actual results may differ because of simplified mathematical models, inaccurate processing conditions, material property settings, and machine aging, among other factors. Therefore, simulated optimal process parameters cannot be directly applied in practice. This study applied machine learning to generate a virtual–actual correction model to improve the accuracy of simulation results, especially the cavity pressure profile, a key indicator of injection‐molding quality for identifying ideal process parameter settings such as filling‐to‐packing switchover time and holding pressure. This method does not require big data for model training to enhance its practicality. Therefore, the correction model is only suitable for specific settings. A set of injection molding machines, molds, and processed materials were used for experimental verification. An autoencoder model was used to extract the features of simulation and actual cavity pressure curves. Then, a multilayer perceptron model was used to determine a relationship between simulation and actual features. The autoencoder was used to decode simulated features into cavity pressure curves. The proposed method was verified with dumbbell‐shaped specimens; the correlation between simulated and actual cavity pressures was greatly improved from 81% to 98%.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25777</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>autoencoder neural network ; cavity pressure ; Computer simulation ; computer‐aided engineering ; Feature extraction ; Filling ; Holes ; Injection molding ; Injection molding machines ; Machine learning ; Material properties ; Mathematical models ; Methods ; multilayer perceptron neural network ; Multilayer perceptrons ; Neural networks ; Optimization ; Parameter identification ; Polymer melts ; process parameter optimization ; Process parameters ; Simulation</subject><ispartof>Polymer engineering and science, 2021-10, Vol.61 (10), p.2511-2521</ispartof><rights>2021 Society of Plastics Engineers.</rights><rights>COPYRIGHT 2021 Society of Plastics Engineers, Inc.</rights><rights>2021 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4737-e37e421926844378242ce6d5cf1680f1194e9fc861e474f76b53fff8a9f55d0c3</citedby><cites>FETCH-LOGICAL-c4737-e37e421926844378242ce6d5cf1680f1194e9fc861e474f76b53fff8a9f55d0c3</cites><orcidid>0000-0002-0477-7357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25777$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25777$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Huang, Ming‐Shyan</creatorcontrib><creatorcontrib>Liu, Chun‐Yin</creatorcontrib><creatorcontrib>Ke, Kun‐Cheng</creatorcontrib><title>Calibration of cavity pressure simulation using autoencoder and multilayer perceptron neural networks</title><title>Polymer engineering and science</title><description>Numerical simulations of polymer melt flow behavior in cavities help predict and optimize injection molding process parameters. However, simulation and actual results may differ because of simplified mathematical models, inaccurate processing conditions, material property settings, and machine aging, among other factors. Therefore, simulated optimal process parameters cannot be directly applied in practice. This study applied machine learning to generate a virtual–actual correction model to improve the accuracy of simulation results, especially the cavity pressure profile, a key indicator of injection‐molding quality for identifying ideal process parameter settings such as filling‐to‐packing switchover time and holding pressure. This method does not require big data for model training to enhance its practicality. Therefore, the correction model is only suitable for specific settings. A set of injection molding machines, molds, and processed materials were used for experimental verification. An autoencoder model was used to extract the features of simulation and actual cavity pressure curves. Then, a multilayer perceptron model was used to determine a relationship between simulation and actual features. The autoencoder was used to decode simulated features into cavity pressure curves. The proposed method was verified with dumbbell‐shaped specimens; the correlation between simulated and actual cavity pressures was greatly improved from 81% to 98%.</description><subject>autoencoder neural network</subject><subject>cavity pressure</subject><subject>Computer simulation</subject><subject>computer‐aided engineering</subject><subject>Feature extraction</subject><subject>Filling</subject><subject>Holes</subject><subject>Injection molding</subject><subject>Injection molding machines</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>multilayer perceptron neural network</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Polymer melts</subject><subject>process parameter optimization</subject><subject>Process parameters</subject><subject>Simulation</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1klFvFCEQx4nRxLP1wW-wiU8m7hUWFtjH5lK1SaONrc-EY4eVugcrsNb79tJuE73kDA8TmN9_Bpg_Qm8IXhOMm7MJ_LpphRDP0Iq0TNYNp-w5WmFMm5pKKV-iVynd4cLStlsh2OjRbaPOLvgq2MroXy7vqylCSnOEKrndPC7ZOTk_VHrOAbwJPcRK-74q6exGvS_bCaKBKcfCepijHkvI9yH-SKfohdVjgtdP8QR9-3Bxu_lUX335eLk5v6oNE1TUQAWwhnQNl4xRIRvWGOB9ayzhEltCOgadNZITYIJZwbcttdZK3dm27bGhJ-jtUneK4ecMKau7MEdfWqryKZJQyTn-Sw16BOW8DTlqs3PJqPPShzNKJCtUfYQawEN5WfBgXTk-4NdH-LJ62DlzVPDuQFCYDL_zoOeU1OXN10P2_T_s9mEUZUDOJzd8z2mRHCttYkgpglVTdDsd94pg9eATVXyiHn1S2LOFvS_32_8fVNcXnxfFH34cvY4</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Huang, Ming‐Shyan</creator><creator>Liu, Chun‐Yin</creator><creator>Ke, Kun‐Cheng</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0477-7357</orcidid></search><sort><creationdate>202110</creationdate><title>Calibration of cavity pressure simulation using autoencoder and multilayer perceptron neural networks</title><author>Huang, Ming‐Shyan ; Liu, Chun‐Yin ; Ke, Kun‐Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4737-e37e421926844378242ce6d5cf1680f1194e9fc861e474f76b53fff8a9f55d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>autoencoder neural network</topic><topic>cavity pressure</topic><topic>Computer simulation</topic><topic>computer‐aided engineering</topic><topic>Feature extraction</topic><topic>Filling</topic><topic>Holes</topic><topic>Injection molding</topic><topic>Injection molding machines</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>multilayer perceptron neural network</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Polymer melts</topic><topic>process parameter optimization</topic><topic>Process parameters</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ming‐Shyan</creatorcontrib><creatorcontrib>Liu, Chun‐Yin</creatorcontrib><creatorcontrib>Ke, Kun‐Cheng</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ming‐Shyan</au><au>Liu, Chun‐Yin</au><au>Ke, Kun‐Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration of cavity pressure simulation using autoencoder and multilayer perceptron neural networks</atitle><jtitle>Polymer engineering and science</jtitle><date>2021-10</date><risdate>2021</risdate><volume>61</volume><issue>10</issue><spage>2511</spage><epage>2521</epage><pages>2511-2521</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>Numerical simulations of polymer melt flow behavior in cavities help predict and optimize injection molding process parameters. However, simulation and actual results may differ because of simplified mathematical models, inaccurate processing conditions, material property settings, and machine aging, among other factors. Therefore, simulated optimal process parameters cannot be directly applied in practice. This study applied machine learning to generate a virtual–actual correction model to improve the accuracy of simulation results, especially the cavity pressure profile, a key indicator of injection‐molding quality for identifying ideal process parameter settings such as filling‐to‐packing switchover time and holding pressure. This method does not require big data for model training to enhance its practicality. Therefore, the correction model is only suitable for specific settings. A set of injection molding machines, molds, and processed materials were used for experimental verification. An autoencoder model was used to extract the features of simulation and actual cavity pressure curves. Then, a multilayer perceptron model was used to determine a relationship between simulation and actual features. The autoencoder was used to decode simulated features into cavity pressure curves. The proposed method was verified with dumbbell‐shaped specimens; the correlation between simulated and actual cavity pressures was greatly improved from 81% to 98%.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.25777</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0477-7357</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2021-10, Vol.61 (10), p.2511-2521
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_2578138660
source Wiley Online Library Journals Frontfile Complete
subjects autoencoder neural network
cavity pressure
Computer simulation
computer‐aided engineering
Feature extraction
Filling
Holes
Injection molding
Injection molding machines
Machine learning
Material properties
Mathematical models
Methods
multilayer perceptron neural network
Multilayer perceptrons
Neural networks
Optimization
Parameter identification
Polymer melts
process parameter optimization
Process parameters
Simulation
title Calibration of cavity pressure simulation using autoencoder and multilayer perceptron neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A15%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20of%20cavity%20pressure%20simulation%20using%20autoencoder%20and%20multilayer%20perceptron%20neural%20networks&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Huang,%20Ming%E2%80%90Shyan&rft.date=2021-10&rft.volume=61&rft.issue=10&rft.spage=2511&rft.epage=2521&rft.pages=2511-2521&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25777&rft_dat=%3Cgale_proqu%3EA680643184%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578138660&rft_id=info:pmid/&rft_galeid=A680643184&rfr_iscdi=true