Semi-Dynamical Systems Generated by Autonomous Caputo Fractional Differential Equations
An autonomous Caputo fractional differential equation of order α ∈ (0,1) in a finite dimensional space whose vector field satisfies a global Lipschitz condition is shown to generate a semi-dynamical system in the function space C of continuous functions with the topology uniform convergence on compa...
Gespeichert in:
Veröffentlicht in: | Vietnam journal of mathematics 2021-12, Vol.49 (4), p.1305-1315 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An autonomous Caputo fractional differential equation of order
α
∈ (0,1) in a finite dimensional space whose vector field satisfies a global Lipschitz condition is shown to generate a semi-dynamical system in the function space
C
of continuous functions with the topology uniform convergence on compact subsets. This contrasts with a recent result of Cong and Tuan (J. Integral Equ. Appl.: 29, 585–608,
2017
), which showed that such equations do not, in general, generate a dynamical system on the state space. |
---|---|
ISSN: | 2305-221X 2305-2228 |
DOI: | 10.1007/s10013-020-00464-6 |