Semi-Dynamical Systems Generated by Autonomous Caputo Fractional Differential Equations

An autonomous Caputo fractional differential equation of order α ∈ (0,1) in a finite dimensional space whose vector field satisfies a global Lipschitz condition is shown to generate a semi-dynamical system in the function space C of continuous functions with the topology uniform convergence on compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2021-12, Vol.49 (4), p.1305-1315
Hauptverfasser: Doan, Thai Son, Kloeden, Peter E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An autonomous Caputo fractional differential equation of order α ∈ (0,1) in a finite dimensional space whose vector field satisfies a global Lipschitz condition is shown to generate a semi-dynamical system in the function space C of continuous functions with the topology uniform convergence on compact subsets. This contrasts with a recent result of Cong and Tuan (J. Integral Equ. Appl.: 29, 585–608, 2017 ), which showed that such equations do not, in general, generate a dynamical system on the state space.
ISSN:2305-221X
2305-2228
DOI:10.1007/s10013-020-00464-6