Periodic Solutions to Partial Neutral Functional Differential Equations in Admissible Spaces on a Half-Line

We prove the existence and uniqueness of periodic solutions to partial neutral function differential equation of the form ∂ F u t ∂ t = A ( t ) F u t + g ( t , u t ) , t ∈ [ 0 , ∞ ) , on a Banach space X , where the operator-valued function t ↦ A ( t ) and the nonlinear delay operator g ( t , v ) ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2021-12, Vol.49 (4), p.1043-1064
Hauptverfasser: Vu, Thi Ngoc Ha, Nguyen, Thieu Huy, Nguyen, Thi Loan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the existence and uniqueness of periodic solutions to partial neutral function differential equation of the form ∂ F u t ∂ t = A ( t ) F u t + g ( t , u t ) , t ∈ [ 0 , ∞ ) , on a Banach space X , where the operator-valued function t ↦ A ( t ) and the nonlinear delay operator g ( t , v ) are both T -periodic with respect to t , whereas g is φ -Lipschitz with respect to v for φ belonging to an admissible space. Then, in the case that the family ( A ( t )) t ≥ 0 generates an evolution family having an exponential dichotomy, we apply our abstract results to study the existence, uniqueness of periodic solutions. We also prove the conditional stability, and the existence of local stable manifolds around such periodic solutions.
ISSN:2305-221X
2305-2228
DOI:10.1007/s10013-020-00405-3