Action-Centered Information Retrieval

Information retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic level must be considered. In this paper, we explore a type of IR task in which doc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and practice of logic programming 2020-03, Vol.20 (2), p.249-272
Hauptverfasser: BALDUCCINI, MARCELLO, LEBLANC, EMILY C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Information retrieval (IR) aims at retrieving documents that are most relevant to a query provided by a user. Traditional techniques rely mostly on syntactic methods. In some cases, however, links at a deeper semantic level must be considered. In this paper, we explore a type of IR task in which documents describe sequences of events, and queries are about the state of the world after such events. In this context, successfully matching documents and query requires considering the events’ possibly implicit uncertain effects and side effects. We begin by analyzing the problem, then propose an action language-based formalization, and finally automate the corresponding IR task using answer set programming.
ISSN:1471-0684
1475-3081
DOI:10.1017/S1471068419000097