Large complete minors in random subgraphs

Let G be a graph of minimum degree at least k and let G p be the random subgraph of G obtained by keeping each edge independently with probability p . We are interested in the size of the largest complete minor that G p contains when p = (1 + ε )/ k with ε > 0. We show that with high probability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2021-07, Vol.30 (4), p.619-630
Hauptverfasser: Erde, Joshua, Kang, Mihyun, Krivelevich, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a graph of minimum degree at least k and let G p be the random subgraph of G obtained by keeping each edge independently with probability p . We are interested in the size of the largest complete minor that G p contains when p = (1 + ε )/ k with ε > 0. We show that with high probability G p contains a complete minor of order $\tilde{\Omega}(\sqrt{k})$ , where the ~ hides a polylogarithmic factor. Furthermore, in the case where the order of G is also bounded above by a constant multiple of k , we show that this polylogarithmic term can be removed, giving a tight bound.
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548320000607