Li–Yorke sensitivity does not imply Li–Yorke chaos

We construct an infinite-dimensional compact metric space $X$ , which is a closed subset of $\mathbb{S}\times \mathbb{H}$ , where $\mathbb{S}$ is the unit circle and $\mathbb{H}$ is the Hilbert cube, and a skew-product map $F$ acting on $X$ such that $(X,F)$ is Li–Yorke sensitive but possesses at mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2019-11, Vol.39 (11), p.3066-3074
1. Verfasser: HANTÁKOVÁ, JANA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct an infinite-dimensional compact metric space $X$ , which is a closed subset of $\mathbb{S}\times \mathbb{H}$ , where $\mathbb{S}$ is the unit circle and $\mathbb{H}$ is the Hilbert cube, and a skew-product map $F$ acting on $X$ such that $(X,F)$ is Li–Yorke sensitive but possesses at most countable scrambled sets. This disproves the conjecture of Akin and Kolyada that Li–Yorke sensitivity implies Li–Yorke chaos [Akin and Kolyada. Li–Yorke sensitivity. Nonlinearity 16, (2003), 1421–1433].
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2018.10