Li–Yorke sensitivity does not imply Li–Yorke chaos
We construct an infinite-dimensional compact metric space $X$ , which is a closed subset of $\mathbb{S}\times \mathbb{H}$ , where $\mathbb{S}$ is the unit circle and $\mathbb{H}$ is the Hilbert cube, and a skew-product map $F$ acting on $X$ such that $(X,F)$ is Li–Yorke sensitive but possesses at mo...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2019-11, Vol.39 (11), p.3066-3074 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct an infinite-dimensional compact metric space
$X$
, which is a closed subset of
$\mathbb{S}\times \mathbb{H}$
, where
$\mathbb{S}$
is the unit circle and
$\mathbb{H}$
is the Hilbert cube, and a skew-product map
$F$
acting on
$X$
such that
$(X,F)$
is Li–Yorke sensitive but possesses at most countable scrambled sets. This disproves the conjecture of Akin and Kolyada that Li–Yorke sensitivity implies Li–Yorke chaos [Akin and Kolyada. Li–Yorke sensitivity. Nonlinearity
16, (2003), 1421–1433]. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2018.10 |