Nonlinear systems coupled through multi-marginal transport problems
In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show tha...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2020-06, Vol.31 (3), p.450-469 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 3 |
container_start_page | 450 |
container_title | European journal of applied mathematics |
container_volume | 31 |
creator | LABORDE, M. |
description | In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show that theWasserstein gradient flow theory provides a very good framework to solve these highly nonlinear systems. At the end, a uniqueness result is presented in dimension one based on convexity arguments. |
doi_str_mv | 10.1017/S0956792519000123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577668583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577668583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a5d73fbc88db47d5123e3f1aefade7ff8c2d538c8a906df2d50e158abcf2183c3</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoWEd_gLuA62rSNK-lFF8w6EJdlzSPmQ5tU5N0Mf_elHHn6nI559z7cQC4xegeI8wfPpGkjMuKYokQwhU5AwWumSzruqLnoFjlctUvwVWMh2whiMsCNO9-GvrJqgDjMSY7Rqj9Mg_WwLQPftnt4bgMqS9HFXb9pAaYgpri7EOCc_DdkBPX4MKpIdqbv7kB389PX81ruf14eWset6UmmKVSUcOJ67QQpqu5oRnSEoeVdcpY7pzQlaFEaKEkYsblBVlMheq0q7AgmmzA3elufvyz2Jjag19CZoptRTlnTFBBsgufXDr4GIN17Rz6TH9sMWrXrtp_XZFfMI5dxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577668583</pqid></control><display><type>article</type><title>Nonlinear systems coupled through multi-marginal transport problems</title><source>Cambridge Journals</source><creator>LABORDE, M.</creator><creatorcontrib>LABORDE, M.</creatorcontrib><description>In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show that theWasserstein gradient flow theory provides a very good framework to solve these highly nonlinear systems. At the end, a uniqueness result is presented in dimension one based on convexity arguments.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792519000123</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Applied mathematics ; Convexity ; Costs ; Flow theory ; Gradient flow ; Nonlinear equations ; Nonlinear systems ; Urban planning</subject><ispartof>European journal of applied mathematics, 2020-06, Vol.31 (3), p.450-469</ispartof><rights>Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a5d73fbc88db47d5123e3f1aefade7ff8c2d538c8a906df2d50e158abcf2183c3</citedby><cites>FETCH-LOGICAL-c316t-a5d73fbc88db47d5123e3f1aefade7ff8c2d538c8a906df2d50e158abcf2183c3</cites><orcidid>0000-0002-1763-7441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>LABORDE, M.</creatorcontrib><title>Nonlinear systems coupled through multi-marginal transport problems</title><title>European journal of applied mathematics</title><description>In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show that theWasserstein gradient flow theory provides a very good framework to solve these highly nonlinear systems. At the end, a uniqueness result is presented in dimension one based on convexity arguments.</description><subject>Applied mathematics</subject><subject>Convexity</subject><subject>Costs</subject><subject>Flow theory</subject><subject>Gradient flow</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Urban planning</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkEtLxDAUhYMoWEd_gLuA62rSNK-lFF8w6EJdlzSPmQ5tU5N0Mf_elHHn6nI559z7cQC4xegeI8wfPpGkjMuKYokQwhU5AwWumSzruqLnoFjlctUvwVWMh2whiMsCNO9-GvrJqgDjMSY7Rqj9Mg_WwLQPftnt4bgMqS9HFXb9pAaYgpri7EOCc_DdkBPX4MKpIdqbv7kB389PX81ruf14eWset6UmmKVSUcOJ67QQpqu5oRnSEoeVdcpY7pzQlaFEaKEkYsblBVlMheq0q7AgmmzA3elufvyz2Jjag19CZoptRTlnTFBBsgufXDr4GIN17Rz6TH9sMWrXrtp_XZFfMI5dxg</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>LABORDE, M.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1763-7441</orcidid></search><sort><creationdate>202006</creationdate><title>Nonlinear systems coupled through multi-marginal transport problems</title><author>LABORDE, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a5d73fbc88db47d5123e3f1aefade7ff8c2d538c8a906df2d50e158abcf2183c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied mathematics</topic><topic>Convexity</topic><topic>Costs</topic><topic>Flow theory</topic><topic>Gradient flow</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Urban planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LABORDE, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LABORDE, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear systems coupled through multi-marginal transport problems</atitle><jtitle>European journal of applied mathematics</jtitle><date>2020-06</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>450</spage><epage>469</epage><pages>450-469</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show that theWasserstein gradient flow theory provides a very good framework to solve these highly nonlinear systems. At the end, a uniqueness result is presented in dimension one based on convexity arguments.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0956792519000123</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1763-7441</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7925 |
ispartof | European journal of applied mathematics, 2020-06, Vol.31 (3), p.450-469 |
issn | 0956-7925 1469-4425 |
language | eng |
recordid | cdi_proquest_journals_2577668583 |
source | Cambridge Journals |
subjects | Applied mathematics Convexity Costs Flow theory Gradient flow Nonlinear equations Nonlinear systems Urban planning |
title | Nonlinear systems coupled through multi-marginal transport problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20systems%20coupled%20through%20multi-marginal%20transport%20problems&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=LABORDE,%20M.&rft.date=2020-06&rft.volume=31&rft.issue=3&rft.spage=450&rft.epage=469&rft.pages=450-469&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792519000123&rft_dat=%3Cproquest_cross%3E2577668583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577668583&rft_id=info:pmid/&rfr_iscdi=true |