Nonlinear systems coupled through multi-marginal transport problems

In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied mathematics 2020-06, Vol.31 (3), p.450-469
1. Verfasser: LABORDE, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the solution to the Monge–Ampère equation. We show that theWasserstein gradient flow theory provides a very good framework to solve these highly nonlinear systems. At the end, a uniqueness result is presented in dimension one based on convexity arguments.
ISSN:0956-7925
1469-4425
DOI:10.1017/S0956792519000123