Set Partitioning in Hierarchical Trees for Point Cloud Attribute Compression

We propose an embedded attribute encoding method for point clouds based on set partitioning in hierarchical trees (SPIHT). The encoder is used with the region-adaptive hierarchical transform, which has been a popular transform for point cloud coding and is included in the standard geometry-based poi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2021, Vol.28, p.1903-1907
Hauptverfasser: Souto, Andre L., Figueiredo, Victor F., Chou, Philip A., de Queiroz, Ricardo L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an embedded attribute encoding method for point clouds based on set partitioning in hierarchical trees (SPIHT). The encoder is used with the region-adaptive hierarchical transform, which has been a popular transform for point cloud coding and is included in the standard geometry-based point cloud coder (G-PCC). The result is an encoder that is efficient, scalable, and embedded. That is, higher compression is achieved by trimming the full bit-stream. G-PCC's RAHT coefficient prediction prevents the straightforward incorporation of SPIHT into G-PCC. However, our results over other RAHT-based coders are promising, improving over the original, non-predictive RAHT encoder, while providing the key functionality of being embedded.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2021.3112335