(Na, Bi)TiO3 based lead-free ferroelectric thin films on Si substrate for pyroelectric infrared sensors

In this study, we report ferroelectric and pyroelectric properties of (Na0.5Bi0.5)TiO3-BaTiO3 (NBT-BT) thin films on Si substrates using chemical solution deposition for the first time. The NBT-BT thin films deposited on Pt/Ti/SiO2/Si substrates have exhibited a typical hysteresis loop with remnant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Akai, D, Yoshita, R, Ishida, M
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we report ferroelectric and pyroelectric properties of (Na0.5Bi0.5)TiO3-BaTiO3 (NBT-BT) thin films on Si substrates using chemical solution deposition for the first time. The NBT-BT thin films deposited on Pt/Ti/SiO2/Si substrates have exhibited a typical hysteresis loop with remnant polarization of 5 μC/cm2 and coercive field of 80 kV/cm. Furthermore NBT-BT films showed pyroelectricity with pyroelectric coefficient of 0.6×10−8 C/cm2K. Monolithic-integration of Si electronics and lead-free ferroelectric NBT thin films has been archived using SiN passivation layer. It was previously believed that LSI processes could not incorporate any sodium-containing material which would cause characteristic degradation, such as threshold voltage shift. In this work, no threshold voltage shift in MOS characteristics was observed using this SiN layer. The SiN layer not only blocked diffusion from NBT chemistry, but also from crystallized NBT films during NBT formation process.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/433/1/012017