Ice Inheritance in Dynamical Disk Models

The compositions of planet-forming disks are set by a combination of material inherited from the interstellar medium and material reprocessed during disk formation and evolution. Indeed, comets and primitive meteorites exhibit interstellar-like isotopic ratios and/or volatile compositions, supportin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-09, Vol.919 (1), p.45
Hauptverfasser: Bergner, Jennifer B., Ciesla, Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 45
container_title The Astrophysical journal
container_volume 919
creator Bergner, Jennifer B.
Ciesla, Fred
description The compositions of planet-forming disks are set by a combination of material inherited from the interstellar medium and material reprocessed during disk formation and evolution. Indeed, comets and primitive meteorites exhibit interstellar-like isotopic ratios and/or volatile compositions, supporting that some pristine material was incorporated intact into icy planetesimals in the solar nebula. To date, the survival of volatile interstellar material in the disk stage has not been modeled using realistic disk physics. Here, we present a modeling framework to track the destruction of interstellar ices on dust grains undergoing transport processes within a disk, with a particular focus on explaining the incorporation of pristine material into icy planetesimals. We find that it is difficult to explain inheritance through the local assembly of comets, as ice destruction is rapid for small (
doi_str_mv 10.3847/1538-4357/ac0fd7
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2577064183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577064183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-a7ee61b68e00f3514aaba5173e59d2d1970215f45792e89af618b6da33c82aec3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoWEf3Lgu6cGGdpEmaZCkzPgojbhTchds0wdZOW5POYv69LRXdiKv74Dv3cg5C5wTfUMnEknAqE0a5WILBrhQHKPpZHaIIY8ySjIq3Y3QSQj2NqVIRusqNjfP23fpqgHbsqzZe71vYVgaaeF2Fj_ipK20TTtGRgybYs--6QK_3dy-rx2Tz_JCvbjeJoUINCQhrM1Jk0mLsKCcMoABOBLVclWlJlMAp4Y5xoVIrFbiMyCIrgVIjU7CGLtDFfLf33efOhkHX3c6340udciFwxoikI4VnyvguBG-d7n21Bb_XBOspDz2Z15N5PecxSq5nSdX1vzf_wS__wKGvtSJKE8247ktHvwDSwmwe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577064183</pqid></control><display><type>article</type><title>Ice Inheritance in Dynamical Disk Models</title><source>IOP Publishing Free Content</source><creator>Bergner, Jennifer B. ; Ciesla, Fred</creator><creatorcontrib>Bergner, Jennifer B. ; Ciesla, Fred</creatorcontrib><description>The compositions of planet-forming disks are set by a combination of material inherited from the interstellar medium and material reprocessed during disk formation and evolution. Indeed, comets and primitive meteorites exhibit interstellar-like isotopic ratios and/or volatile compositions, supporting that some pristine material was incorporated intact into icy planetesimals in the solar nebula. To date, the survival of volatile interstellar material in the disk stage has not been modeled using realistic disk physics. Here, we present a modeling framework to track the destruction of interstellar ices on dust grains undergoing transport processes within a disk, with a particular focus on explaining the incorporation of pristine material into icy planetesimals. We find that it is difficult to explain inheritance through the local assembly of comets, as ice destruction is rapid for small (&lt;10 μ m) grains in the inner few tens of au. Instead, a plausible pathway to inheritance is to form pebbles at larger disk radii, which then drift inward to the comet-forming zone with their ices mostly preserved. Small grains beyond ∼100 au can experience ice photodissociation at the tens of percent level; however, little of the ice is actually lost from the grain, likely making this a robust site for in situ ice chemistry. Our models also indicate that many complex organic species should survive passage through the disk intact. This raises the possibility that organics synthesized in the interstellar medium can be delivered to terrestrial planets by icy-body impact and thus potentially participate in origins of life chemistry.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac0fd7</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; Astrochemistry ; Astrophysics ; Comet origins ; Comets ; Destruction ; Grains ; Ice ; Inheritances ; Interstellar ices ; Interstellar matter ; Interstellar medium ; Isotope ratios ; Modelling ; Photodissociation ; Planet formation ; Planetary composition ; Protoplanetary disks ; Solar nebula ; Terrestrial environments ; Terrestrial planets ; Transport processes</subject><ispartof>The Astrophysical journal, 2021-09, Vol.919 (1), p.45</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-a7ee61b68e00f3514aaba5173e59d2d1970215f45792e89af618b6da33c82aec3</citedby><cites>FETCH-LOGICAL-c379t-a7ee61b68e00f3514aaba5173e59d2d1970215f45792e89af618b6da33c82aec3</cites><orcidid>0000-0002-8716-0482 ; 0000-0002-0093-065X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac0fd7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac0fd7$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Bergner, Jennifer B.</creatorcontrib><creatorcontrib>Ciesla, Fred</creatorcontrib><title>Ice Inheritance in Dynamical Disk Models</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The compositions of planet-forming disks are set by a combination of material inherited from the interstellar medium and material reprocessed during disk formation and evolution. Indeed, comets and primitive meteorites exhibit interstellar-like isotopic ratios and/or volatile compositions, supporting that some pristine material was incorporated intact into icy planetesimals in the solar nebula. To date, the survival of volatile interstellar material in the disk stage has not been modeled using realistic disk physics. Here, we present a modeling framework to track the destruction of interstellar ices on dust grains undergoing transport processes within a disk, with a particular focus on explaining the incorporation of pristine material into icy planetesimals. We find that it is difficult to explain inheritance through the local assembly of comets, as ice destruction is rapid for small (&lt;10 μ m) grains in the inner few tens of au. Instead, a plausible pathway to inheritance is to form pebbles at larger disk radii, which then drift inward to the comet-forming zone with their ices mostly preserved. Small grains beyond ∼100 au can experience ice photodissociation at the tens of percent level; however, little of the ice is actually lost from the grain, likely making this a robust site for in situ ice chemistry. Our models also indicate that many complex organic species should survive passage through the disk intact. This raises the possibility that organics synthesized in the interstellar medium can be delivered to terrestrial planets by icy-body impact and thus potentially participate in origins of life chemistry.</description><subject>Accretion disks</subject><subject>Astrochemistry</subject><subject>Astrophysics</subject><subject>Comet origins</subject><subject>Comets</subject><subject>Destruction</subject><subject>Grains</subject><subject>Ice</subject><subject>Inheritances</subject><subject>Interstellar ices</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Isotope ratios</subject><subject>Modelling</subject><subject>Photodissociation</subject><subject>Planet formation</subject><subject>Planetary composition</subject><subject>Protoplanetary disks</subject><subject>Solar nebula</subject><subject>Terrestrial environments</subject><subject>Terrestrial planets</subject><subject>Transport processes</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoWEf3Lgu6cGGdpEmaZCkzPgojbhTchds0wdZOW5POYv69LRXdiKv74Dv3cg5C5wTfUMnEknAqE0a5WILBrhQHKPpZHaIIY8ySjIq3Y3QSQj2NqVIRusqNjfP23fpqgHbsqzZe71vYVgaaeF2Fj_ipK20TTtGRgybYs--6QK_3dy-rx2Tz_JCvbjeJoUINCQhrM1Jk0mLsKCcMoABOBLVclWlJlMAp4Y5xoVIrFbiMyCIrgVIjU7CGLtDFfLf33efOhkHX3c6340udciFwxoikI4VnyvguBG-d7n21Bb_XBOspDz2Z15N5PecxSq5nSdX1vzf_wS__wKGvtSJKE8247ktHvwDSwmwe</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Bergner, Jennifer B.</creator><creator>Ciesla, Fred</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8716-0482</orcidid><orcidid>https://orcid.org/0000-0002-0093-065X</orcidid></search><sort><creationdate>20210901</creationdate><title>Ice Inheritance in Dynamical Disk Models</title><author>Bergner, Jennifer B. ; Ciesla, Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-a7ee61b68e00f3514aaba5173e59d2d1970215f45792e89af618b6da33c82aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accretion disks</topic><topic>Astrochemistry</topic><topic>Astrophysics</topic><topic>Comet origins</topic><topic>Comets</topic><topic>Destruction</topic><topic>Grains</topic><topic>Ice</topic><topic>Inheritances</topic><topic>Interstellar ices</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Isotope ratios</topic><topic>Modelling</topic><topic>Photodissociation</topic><topic>Planet formation</topic><topic>Planetary composition</topic><topic>Protoplanetary disks</topic><topic>Solar nebula</topic><topic>Terrestrial environments</topic><topic>Terrestrial planets</topic><topic>Transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergner, Jennifer B.</creatorcontrib><creatorcontrib>Ciesla, Fred</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bergner, Jennifer B.</au><au>Ciesla, Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice Inheritance in Dynamical Disk Models</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>919</volume><issue>1</issue><spage>45</spage><pages>45-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The compositions of planet-forming disks are set by a combination of material inherited from the interstellar medium and material reprocessed during disk formation and evolution. Indeed, comets and primitive meteorites exhibit interstellar-like isotopic ratios and/or volatile compositions, supporting that some pristine material was incorporated intact into icy planetesimals in the solar nebula. To date, the survival of volatile interstellar material in the disk stage has not been modeled using realistic disk physics. Here, we present a modeling framework to track the destruction of interstellar ices on dust grains undergoing transport processes within a disk, with a particular focus on explaining the incorporation of pristine material into icy planetesimals. We find that it is difficult to explain inheritance through the local assembly of comets, as ice destruction is rapid for small (&lt;10 μ m) grains in the inner few tens of au. Instead, a plausible pathway to inheritance is to form pebbles at larger disk radii, which then drift inward to the comet-forming zone with their ices mostly preserved. Small grains beyond ∼100 au can experience ice photodissociation at the tens of percent level; however, little of the ice is actually lost from the grain, likely making this a robust site for in situ ice chemistry. Our models also indicate that many complex organic species should survive passage through the disk intact. This raises the possibility that organics synthesized in the interstellar medium can be delivered to terrestrial planets by icy-body impact and thus potentially participate in origins of life chemistry.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac0fd7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8716-0482</orcidid><orcidid>https://orcid.org/0000-0002-0093-065X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-09, Vol.919 (1), p.45
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2577064183
source IOP Publishing Free Content
subjects Accretion disks
Astrochemistry
Astrophysics
Comet origins
Comets
Destruction
Grains
Ice
Inheritances
Interstellar ices
Interstellar matter
Interstellar medium
Isotope ratios
Modelling
Photodissociation
Planet formation
Planetary composition
Protoplanetary disks
Solar nebula
Terrestrial environments
Terrestrial planets
Transport processes
title Ice Inheritance in Dynamical Disk Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice%20Inheritance%20in%20Dynamical%20Disk%20Models&rft.jtitle=The%20Astrophysical%20journal&rft.au=Bergner,%20Jennifer%20B.&rft.date=2021-09-01&rft.volume=919&rft.issue=1&rft.spage=45&rft.pages=45-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac0fd7&rft_dat=%3Cproquest_O3W%3E2577064183%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577064183&rft_id=info:pmid/&rfr_iscdi=true