Ice Inheritance in Dynamical Disk Models

The compositions of planet-forming disks are set by a combination of material inherited from the interstellar medium and material reprocessed during disk formation and evolution. Indeed, comets and primitive meteorites exhibit interstellar-like isotopic ratios and/or volatile compositions, supportin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-09, Vol.919 (1), p.45
Hauptverfasser: Bergner, Jennifer B., Ciesla, Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The compositions of planet-forming disks are set by a combination of material inherited from the interstellar medium and material reprocessed during disk formation and evolution. Indeed, comets and primitive meteorites exhibit interstellar-like isotopic ratios and/or volatile compositions, supporting that some pristine material was incorporated intact into icy planetesimals in the solar nebula. To date, the survival of volatile interstellar material in the disk stage has not been modeled using realistic disk physics. Here, we present a modeling framework to track the destruction of interstellar ices on dust grains undergoing transport processes within a disk, with a particular focus on explaining the incorporation of pristine material into icy planetesimals. We find that it is difficult to explain inheritance through the local assembly of comets, as ice destruction is rapid for small (
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac0fd7