The modified Poincare-Dulac method in analysis of autooscillations of nonlinear mechanical systems

A dynamic equation of a mechanical system with one degree of freedom with functionally odd nonlinear recover forces and small dissipative forces is considered. An improved method of transformation and integration of the equation, based on a method of normalization of Poincare-Dulac is developed. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2014-12, Vol.570 (2), p.22002
Hauptverfasser: Melnikov, Gennady I, Ivanov, Sergei E, Melnikov, Vitaly G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dynamic equation of a mechanical system with one degree of freedom with functionally odd nonlinear recover forces and small dissipative forces is considered. An improved method of transformation and integration of the equation, based on a method of normalization of Poincare-Dulac is developed. The improvement of the method is in application of the Chebyshev's economization to high-order nonlinear terms.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/570/2/022002