Bio-Cementation for Improving Soil Thermal Conductivity
A promising technology for renewable energy is energy piles used to heat and cool buildings. In this research, the effects of bio-cementation via microbially induced calcite precipitation (MICP) using mixed calcium and magnesium sources and the addition of fibres on the thermal conductivity of soil...
Gespeichert in:
Veröffentlicht in: | Sustainability 2021-09, Vol.13 (18), p.10238 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A promising technology for renewable energy is energy piles used to heat and cool buildings. In this research, the effects of bio-cementation via microbially induced calcite precipitation (MICP) using mixed calcium and magnesium sources and the addition of fibres on the thermal conductivity of soil were investigated. Firstly, silica sand specimens were treated with cementation solutions containing different ratios of calcium chloride and magnesium chloride to achieve maximum thermal conductivity improvement. Three treatment cycles were provided, and the corresponding thermal conductivity was measured after each cycle. It was found that using 100% calcium chloride resulted in the highest thermal conductivity. This cementation solution was then used to treat bio-cemented soil samples containing fibres, including polyethylene, steel and glass fibres. The fibre contents used included 0.5%, 1.0% and 1.5% of the dry sand mass. The results show that the glass fibre samples yielded the highest thermal conductivity after three treatment cycles, and SEM imaging was used to support the findings. This research suggests that using MICP as a soil improvement technique can also improve the thermal conductivity of soil surrounding energy piles, which has high potential to effectively improve the efficiency of energy piles. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su131810238 |