Preparation of Microcellular Foams by Supercritical Carbon Dioxide: A Case Study of Thermoplastic Polyurethane 70A

In this study, a case study to produce microcellular foam of a commercial thermoplastic polyurethane (TPU) through the supercritical carbon dioxide (CO2) foaming process is presented. To explore the feasibility of TPU in medical device and biomedical application, a soft TPU with Shore hardness value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2021-09, Vol.9 (9), p.1650
Hauptverfasser: Hsiao, Yu-Ting, Hsieh, Chieh-Ming, Yang, Tsung-Mao, Su, Chie-Shaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a case study to produce microcellular foam of a commercial thermoplastic polyurethane (TPU) through the supercritical carbon dioxide (CO2) foaming process is presented. To explore the feasibility of TPU in medical device and biomedical application, a soft TPU with Shore hardness value of 70A was selected as the model compound. The effects of saturation temperature and saturation pressure ranging from 90 to 140 °C and 90 to 110 bar on the expansion ratio, cell size and cell density of the TPU foam were compared and discussed. Regarding the expansion ratio, the effect of saturation temperature was considerable and an intermediate saturation temperature of 100 °C was favorable to produce TPU microcellular foam with a high expansion ratio. On the other hand, the mean pore size and cell density of TPU foam can be efficiently manipulated by adjusting the saturation pressure. A high saturation pressure was beneficial to obtain TPU foam with small mean pore size and high cell density. This case study shows that the expansion ratio of TPU microcellular foam could be designed as high as 4.4. The cell size and cell density could be controlled within 12–40 μm and 5.0 × 107–1.3 × 109 cells/cm3, respectively.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9091650