Microwatt-Powered, Low-Cost, Printed Graphene Oxide Humidity Sensors for Distributed Network Applications
We report the design, fabrication, and characterization of novel conductometric humidity sensors that employ an ultrathin film of graphene oxide (GO) nanoflakes as transducing element. The GO film is deposited with a shadow mask using an electrospray emitter operated at atmospheric pressure; no post...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2015-12, Vol.660 (1), p.12134 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the design, fabrication, and characterization of novel conductometric humidity sensors that employ an ultrathin film of graphene oxide (GO) nanoflakes as transducing element. The GO film is deposited with a shadow mask using an electrospray emitter operated at atmospheric pressure; no post treatments-including annealing or doping- were applied to the GO sensors. The Van der Pauw electrode structure used in the sensor had 50 μm linewidths separated by 600 μm and was fabricated with the lift-off metallization technique. In dynamic humidity tests conducted at atmospheric pressure, the sensor tracks the response of a commercial sensor and reacts to changes in humidity in less than 500 ms. There is a quadratic dependence of the relative humidity on the sensor resistance for the relative humidity range between 3% and 63%, with more than a three-fold change in resistance over the range. The power consumption of the sensor is less than 30 μW while drawing 7 μA, and less than 15 μW while drawing 5 μA. Our devices are promising candidates for deployment in a distributed sensor network due to their low cost, small size, and low power consumption. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/660/1/012134 |