Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter
In this paper we report on the design and optimization of a novel combined vibration energy harvester based on the use of electrodynamic and magnetoelectric (ME) principles to increase the energy outcome of an electrodynamic harvester without significantly increasing its size. Thereby the most impor...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2015-12, Vol.660 (1), p.12111 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we report on the design and optimization of a novel combined vibration energy harvester based on the use of electrodynamic and magnetoelectric (ME) principles to increase the energy outcome of an electrodynamic harvester without significantly increasing its size. Thereby the most important aspect is the dependence of magnetic flux variation on design parameters, as is it is the decisive effect for energy conversion. Magnetic circuit form and magnetization are optimized for maximizing energy outcome. We conclude that better magnetic flux variation is reached for a magnetic circuit formed with two magnets stacked one within the other using the same magnetization. Results illustrate that the use of combined converter enables to enhance the performance of simple electrodynamic or ME converter. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/660/1/012111 |