Nano-Gradient Materials Prepared by Rotary Swaging
Gradient nanostructured metallic materials with a nanostructured surface layer show immense potential for various industrial applications because of their outstanding mechanical, fatigue, corrosion, tribological properties, etc. In the past several decades, various methods for fabricating gradient n...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-08, Vol.11 (9), p.2223, Article 2223 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gradient nanostructured metallic materials with a nanostructured surface layer show immense potential for various industrial applications because of their outstanding mechanical, fatigue, corrosion, tribological properties, etc. In the past several decades, various methods for fabricating gradient nanostructure have been developed. Nevertheless, the thickness of gradient microstructure is still in the micrometer scale due to the limitation of preparation techniques. As a traditional but potential technology, rotary swaging (RS) allows gradient stress and strain to be distributed across the radial direction of a bulk cylindrical workpiece. Therefore, in this review paper, we have systematically summarized gradient and even nano-gradient materials prepared by RS. We found that metals processed by RS usually possess inverse nano-gradient, i.e., nano-grains appear in the sample center, texture-gradient and dislocation density-gradient along the radial direction. Moreover, a broad gradient structure is distributed from center to edge of the whole processed rods. In addition, properties including micro-hardness, conductivity, corrosion, etc., of RS processed metals are also reviewed and discussed. Finally, we look forward to the future prospects and further research work for the RS processed materials. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano11092223 |