Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment
Simple Summary Despite breakthroughs in medicine, cancer remains one of the most feared diseases. Traditionally, chemotherapies have been the treatment of choice. However, concerns about stability and poor solubility prevent them from being widely used. Destruction of healthy cells, hair loss, and d...
Gespeichert in:
Veröffentlicht in: | Cancers 2021-09, Vol.13 (18), p.4570, Article 4570 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simple Summary Despite breakthroughs in medicine, cancer remains one of the most feared diseases. Traditionally, chemotherapies have been the treatment of choice. However, concerns about stability and poor solubility prevent them from being widely used. Destruction of healthy cells, hair loss, and drug resistance are all common side effects. In this aspect, nanotechnology opens up new avenues for cancer treatment. ZnO NPs are one of the most valuable metal oxide nanoparticles in cancer treatment owing to their high biocompatibility and low toxicity. The ability of ZnO NPs to selectively trigger the formation of reactive oxygen species and induce apoptosis has been critically appraised in this review. They are also the best contenders for diagnosis and tailored drug delivery in cancer therapeutics. Here, we extensively summarize the role of ZnO NPs in cancer diagnosis, target drug delivery, and treatment, which will help in future research advancements in the field of cancer theranostic. Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs |
---|---|
ISSN: | 2072-6694 2072-6694 |
DOI: | 10.3390/cancers13184570 |