Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance

In this paper, a high-performance multi-channel heterostructure based on lattice-matched AlInN/GaN has been reported. The stacking of five heterostructures yields a high two-dimensional electron gas density of 3.67 × 1013 cm−2 and a small sheet resistance (RSH) of 74.5 Ω/sq. Compared with the AlGaN/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-09, Vol.119 (12), Article 122104
Hauptverfasser: Li, Ang, Wang, Chong, Xu, Shengrui, Zheng, Xuefeng, He, Yunlong, Ma, Xiaohua, Lu, Xiaoli, Zhang, Jinfeng, Liu, Kai, Zhao, Yaopeng, Hao, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a high-performance multi-channel heterostructure based on lattice-matched AlInN/GaN has been reported. The stacking of five heterostructures yields a high two-dimensional electron gas density of 3.67 × 1013 cm−2 and a small sheet resistance (RSH) of 74.5 Ω/sq. Compared with the AlGaN/GaN sample with the same number of heterojunctions, the AlInN/GaN sample reduces the RSH by 51.2%. Since the AlInN barrier and GaN channel are lattice-matched, the strain defects caused by piezoelectric strain can be alleviated. The high-resolution x-ray diffraction results show that the total dislocation density in AlInN/GaN multi-channels is reduced by 18.9%. The calculation models of multiple-channel heterostructures are obtained to investigate the electron population and energy band diagram, and the calculated results are roughly consistent with the experimental results. With a gate–drain spacing of 11.5 μm, the on-resistance (RON) of the AlInN/GaN multi-channel HEMT was only 2.26 Ω mm, indicating that the lattice-matched multi-channel AlInN/GaN heterostructure can substantially enhance the current drive efficiency and improve the output performance of the devices.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0063638