Full-color micro-LED display based on a single chip with two types of InGaN/GaN MQWs

In this Letter, we have successfully realized the full-color micro-LED display on a single-chip utilizing multi-wavelength multi-quantum wells (MQWs). The epitaxial wafer used for micro-LED array chips is designed with two types of MQWs including In0.1Ga0.9N/GaN and In0.55Ga0.45N/GaN grown by metal-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2021-09, Vol.46 (17), p.4358-4361
Hauptverfasser: Wang, Zhou, Zhu, Shijie, Shan, Xinyi, Yuan, Zexing, Cui, Xugao, Tian, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this Letter, we have successfully realized the full-color micro-LED display on a single-chip utilizing multi-wavelength multi-quantum wells (MQWs). The epitaxial wafer used for micro-LED array chips is designed with two types of MQWs including In0.1Ga0.9N/GaN and In0.55Ga0.45N/GaN grown by metal-organic chemical vapor deposition (MOCVD). A single-chip broad-spectrum multi-wavelength emission from 620 to 450 nm can be realized by changing the injection current to realize the regulation of carrier injection in the MQWs with different emission wavelengths. And the full-color micro-J.1RD display with uniform brightness can be achieved by adopting the pulse width modulation (PWM) to adjust the duty cycle of micro-LED pixels at different pulse voltages. We expect this study will provide a promising research direction for full-color micro-LED displays, thus effectively avoiding the problems caused during the massive transfer and color conversion. (C) 2021 Optical Society of America
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.436317