Anapole enhanced on-chip routing of spinâ€"valley photons in 2D materials for silicon integrated optical communication

Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2021-09, Vol.46 (17), p.4080
Hauptverfasser: Yao, Qi, Bie, Ya-Qing, Chen, Jianfa, Li, Jinyang, Li, Feng, Cao, Zhaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 4080
container_title Optics letters
container_volume 46
creator Yao, Qi
Bie, Ya-Qing
Chen, Jianfa
Li, Jinyang
Li, Feng
Cao, Zhaolong
description Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here, we report a design for enhancing valley emission and manipulating valley photon propagation based on degenerate non-radiating anapole states. By placing circularly polarized dipoles on top of a 𝐶4 symmetric cross-slotted silicon disk, the rotating anapole state is excited with a Purcell factor up to two orders. In addition, the photon coupled to the preferred direction of the waveguide are about 2 times larger than that to the opposite direction. Our design could pave the way for realizing on-chip valley-dependent optical communication.
doi_str_mv 10.1364/OL.433457
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2575540438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575540438</sourcerecordid><originalsourceid>FETCH-proquest_journals_25755404383</originalsourceid><addsrcrecordid>eNqNjD1OxDAUhC0EEuGn4AZPUGdxYjshJQJWFEg09CvLOBuvnPeM7SBty1GouQU34SS44ABUM9L3zTB20fBVIzp5_fy0kkJI1R-wqlFiqGU_yENW8UZ29aCG9pidpLTjnHe9EBXb36IO5C1YnDQa-wqEtZlcgEhLdrgFGiEFh9-fPx9fl-_ae7uHMFEmTOAQ2nuYdbbRaZ9gpAjJeWcIC8t2GwsqlyE7oz0YmucFS82O8IwdjWVjz__ylF2tH17uHusQ6W2xKW92tEQsaNOqXinJpbgR_7N-AQQtVT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575540438</pqid></control><display><type>article</type><title>Anapole enhanced on-chip routing of spinâ€"valley photons in 2D materials for silicon integrated optical communication</title><source>Optica Publishing Group Journals</source><creator>Yao, Qi ; Bie, Ya-Qing ; Chen, Jianfa ; Li, Jinyang ; Li, Feng ; Cao, Zhaolong</creator><creatorcontrib>Yao, Qi ; Bie, Ya-Qing ; Chen, Jianfa ; Li, Jinyang ; Li, Feng ; Cao, Zhaolong</creatorcontrib><description>Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here, we report a design for enhancing valley emission and manipulating valley photon propagation based on degenerate non-radiating anapole states. By placing circularly polarized dipoles on top of a 𝐶4 symmetric cross-slotted silicon disk, the rotating anapole state is excited with a Purcell factor up to two orders. In addition, the photon coupled to the preferred direction of the waveguide are about 2 times larger than that to the opposite direction. Our design could pave the way for realizing on-chip valley-dependent optical communication.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.433457</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Circular polarization ; Dipoles ; Optical communication ; Optical components ; Photon emission ; Photons ; Polarized light ; Propagation ; Rotating disks ; Silicon ; Transition metal compounds ; Two dimensional materials ; Valleys ; Waveguides</subject><ispartof>Optics letters, 2021-09, Vol.46 (17), p.4080</ispartof><rights>Copyright Optical Society of America Sep 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yao, Qi</creatorcontrib><creatorcontrib>Bie, Ya-Qing</creatorcontrib><creatorcontrib>Chen, Jianfa</creatorcontrib><creatorcontrib>Li, Jinyang</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Cao, Zhaolong</creatorcontrib><title>Anapole enhanced on-chip routing of spinâ€"valley photons in 2D materials for silicon integrated optical communication</title><title>Optics letters</title><description>Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here, we report a design for enhancing valley emission and manipulating valley photon propagation based on degenerate non-radiating anapole states. By placing circularly polarized dipoles on top of a 𝐶4 symmetric cross-slotted silicon disk, the rotating anapole state is excited with a Purcell factor up to two orders. In addition, the photon coupled to the preferred direction of the waveguide are about 2 times larger than that to the opposite direction. Our design could pave the way for realizing on-chip valley-dependent optical communication.</description><subject>Circular polarization</subject><subject>Dipoles</subject><subject>Optical communication</subject><subject>Optical components</subject><subject>Photon emission</subject><subject>Photons</subject><subject>Polarized light</subject><subject>Propagation</subject><subject>Rotating disks</subject><subject>Silicon</subject><subject>Transition metal compounds</subject><subject>Two dimensional materials</subject><subject>Valleys</subject><subject>Waveguides</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjD1OxDAUhC0EEuGn4AZPUGdxYjshJQJWFEg09CvLOBuvnPeM7SBty1GouQU34SS44ABUM9L3zTB20fBVIzp5_fy0kkJI1R-wqlFiqGU_yENW8UZ29aCG9pidpLTjnHe9EBXb36IO5C1YnDQa-wqEtZlcgEhLdrgFGiEFh9-fPx9fl-_ae7uHMFEmTOAQ2nuYdbbRaZ9gpAjJeWcIC8t2GwsqlyE7oz0YmucFS82O8IwdjWVjz__ylF2tH17uHusQ6W2xKW92tEQsaNOqXinJpbgR_7N-AQQtVT8</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Yao, Qi</creator><creator>Bie, Ya-Qing</creator><creator>Chen, Jianfa</creator><creator>Li, Jinyang</creator><creator>Li, Feng</creator><creator>Cao, Zhaolong</creator><general>Optical Society of America</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210901</creationdate><title>Anapole enhanced on-chip routing of spinâ€"valley photons in 2D materials for silicon integrated optical communication</title><author>Yao, Qi ; Bie, Ya-Qing ; Chen, Jianfa ; Li, Jinyang ; Li, Feng ; Cao, Zhaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25755404383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circular polarization</topic><topic>Dipoles</topic><topic>Optical communication</topic><topic>Optical components</topic><topic>Photon emission</topic><topic>Photons</topic><topic>Polarized light</topic><topic>Propagation</topic><topic>Rotating disks</topic><topic>Silicon</topic><topic>Transition metal compounds</topic><topic>Two dimensional materials</topic><topic>Valleys</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Qi</creatorcontrib><creatorcontrib>Bie, Ya-Qing</creatorcontrib><creatorcontrib>Chen, Jianfa</creatorcontrib><creatorcontrib>Li, Jinyang</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Cao, Zhaolong</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Qi</au><au>Bie, Ya-Qing</au><au>Chen, Jianfa</au><au>Li, Jinyang</au><au>Li, Feng</au><au>Cao, Zhaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anapole enhanced on-chip routing of spinâ€"valley photons in 2D materials for silicon integrated optical communication</atitle><jtitle>Optics letters</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>46</volume><issue>17</issue><spage>4080</spage><pages>4080-</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here, we report a design for enhancing valley emission and manipulating valley photon propagation based on degenerate non-radiating anapole states. By placing circularly polarized dipoles on top of a 𝐶4 symmetric cross-slotted silicon disk, the rotating anapole state is excited with a Purcell factor up to two orders. In addition, the photon coupled to the preferred direction of the waveguide are about 2 times larger than that to the opposite direction. Our design could pave the way for realizing on-chip valley-dependent optical communication.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/OL.433457</doi></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2021-09, Vol.46 (17), p.4080
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_journals_2575540438
source Optica Publishing Group Journals
subjects Circular polarization
Dipoles
Optical communication
Optical components
Photon emission
Photons
Polarized light
Propagation
Rotating disks
Silicon
Transition metal compounds
Two dimensional materials
Valleys
Waveguides
title Anapole enhanced on-chip routing of spinâ€"valley photons in 2D materials for silicon integrated optical communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anapole%20enhanced%20on-chip%20routing%20of%20spin%C3%A2%E2%82%AC%22valley%20photons%20in%202D%20materials%20for%20silicon%20integrated%20optical%20communication&rft.jtitle=Optics%20letters&rft.au=Yao,%20Qi&rft.date=2021-09-01&rft.volume=46&rft.issue=17&rft.spage=4080&rft.pages=4080-&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.433457&rft_dat=%3Cproquest%3E2575540438%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575540438&rft_id=info:pmid/&rfr_iscdi=true