Anapole enhanced on-chip routing of spinâ€"valley photons in 2D materials for silicon integrated optical communication
Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here...
Gespeichert in:
Veröffentlicht in: | Optics letters 2021-09, Vol.46 (17), p.4080 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here, we report a design for enhancing valley emission and manipulating valley photon propagation based on degenerate non-radiating anapole states. By placing circularly polarized dipoles on top of a ð¶4 symmetric cross-slotted silicon disk, the rotating anapole state is excited with a Purcell factor up to two orders. In addition, the photon coupled to the preferred direction of the waveguide are about 2 times larger than that to the opposite direction. Our design could pave the way for realizing on-chip valley-dependent optical communication. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.433457 |