On Groups with Formational Subnormal Strictly 2-Maximal Subgroups
Let H be a subgroup of a finite group G. If G contains a maximal subgroup M such that H is a maximal subgroup of M, then H is called a 2-maximal subgroup of the group G. A subgroup U of G is said to be a strictly 2-maximal subgroup of G if U is a 2-maximal subgroup of G and U is not a 2-maximal subg...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2021-06, Vol.73 (1), p.120-130 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
H
be a subgroup of a finite group
G.
If
G
contains a maximal subgroup
M
such that
H
is a maximal subgroup of
M,
then
H
is called a 2-maximal subgroup of the group
G.
A subgroup
U
of
G
is said to be a strictly 2-maximal subgroup of
G
if
U
is a 2-maximal subgroup of
G
and
U
is not a 2-maximal subgroup in any proper subgroup of
G.
We investigate finite groups with X-subnormal strictly 2-maximal subgroups for any subgroup-closed formation X
.
In this group, any proper subgroup has a nilpotent X-residual. In more detail, we study the case where X = A
1
F for some subgroup-closed formation F and the case where X is a soluble saturated formation. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-021-01912-3 |