Microstructure, Physical Properties, and Magnetic Flux Density Analysis of Permanent Magnet BaFe12O19 using Milling and Sintering Preparation Methods

The purpose of this experiment is to analyze the influence of sintering temperature to the microstructure, physical, and magnetic properties of BaFe12O19 materials. The permanent magnet BaFe12O19 was made by using milling and sintering method, BaFe12O19 commercial powder was used as the raw material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sardjono, Priyo, Suprapedi, Muljadi, Djauhari, Nenen Rusnaeni
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this experiment is to analyze the influence of sintering temperature to the microstructure, physical, and magnetic properties of BaFe12O19 materials. The permanent magnet BaFe12O19 was made by using milling and sintering method, BaFe12O19 commercial powder was used as the raw material in this experiment. The raw material was pulverized by using ball mill for 15 hours and compacted at 400 MPa pressure to obtain a 16mm diameter and 4mm thick pellet. The pellet was sintered with 10oC minute heating rate at various temperature ranges of 1050, 1100, 1150, and 1200oC for 1 hour. The microstructure and particle size of the pellet was investigated using XRD, SEM, and Particle Size Analyzer (PSA). The result shows that the milled powder has hexagonal BaFe12O19 crystal structure as the dominant phase, inhomogeneous size and shape of the grains, and average particle size is 19.60 pm. The bulk density measurement, shrinkage, and magnetic properties of the sintered samples were being observed and analyzed. It was found through this experiment that the optimum sintering temperature is 1150oC to obtain optimum bulk density (4.71 g cm3), constant shrinkage (12.07%), 550 Gauss magnetic flux density, 1.79 kGauss remanence Br, and 1.75 kOe coercivity.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/739/1/012089