Zero-Sum Games for Continuous-time Markov Decision Processes with Risk-Sensitive Average Cost Criterion

We consider zero-sum stochastic games for continuous time Markov decision processes with risk-sensitive average cost criterion. Here the transition and cost rates may be unbounded. We prove the existence of the value of the game and a saddle-point equilibrium in the class of all stationary strategie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-09
Hauptverfasser: Ghosh, Mrinal K, Golui, Subrata, Pal, Chandan, Pradhan, Somnath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider zero-sum stochastic games for continuous time Markov decision processes with risk-sensitive average cost criterion. Here the transition and cost rates may be unbounded. We prove the existence of the value of the game and a saddle-point equilibrium in the class of all stationary strategies under a Lyapunov stability condition. This is accomplished by establishing the existence of a principal eigenpair for the corresponding Hamilton-Jacobi-Isaacs (HJI) equation. This in turn is established by using the nonlinear version of Krein-Rutman theorem. We then obtain a characterization of the saddle-point equilibrium in terms of the corresponding HJI equation. Finally, we use a controlled population system to illustrate results.
ISSN:2331-8422